Ocean vessel satellite network flow prediction method, model and gateway
The invention discloses an ocean vessel satellite communication network flow prediction method, which comprises the following steps: acquiring a network flow data sample generated by an ocean vessel based on satellite communication, and generating a first time sequence data set from the network flow...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LIU JIN WANG JUNXIANG CAO MENGXIANG WU ZHONGDAI |
description | The invention discloses an ocean vessel satellite communication network flow prediction method, which comprises the following steps: acquiring a network flow data sample generated by an ocean vessel based on satellite communication, and generating a first time sequence data set from the network flow data sample according to a flow time sequence; preprocessing the first time sequence data set to obtain a second time sequence data set; adopting TCN to extract short-term local features of the second time sequence data set; establishing a prediction model by adopting LSTM; and obtaining a predicted value of the ship network flow through the prediction model. According to the method, high and low frequency information is extracted through short-term local dependence in the TCN learning time sequence, long-time dependence in the time sequence is effectively captured through the LSTM, and the method for predicting the ocean vessel network flow is high in accuracy and good in robustness.
本发明公开了一种远洋船舶卫星通信网络流量预测方法,包含步骤 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116192667A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116192667A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116192667A3</originalsourceid><addsrcrecordid>eNrjZPDwT05NzFMoSy0uTs1RKE4sSc3JySxJVchLLSnPL8pWSMvJL1coKEpNyUwuyczPU8hNLcnIT9FRyM1PAapPzEtRSAfqKU-s5GFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpQDPjnf0MDc0MLY3MzMwdjYlRAwC4ajRy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Ocean vessel satellite network flow prediction method, model and gateway</title><source>esp@cenet</source><creator>LIU JIN ; WANG JUNXIANG ; CAO MENGXIANG ; WU ZHONGDAI</creator><creatorcontrib>LIU JIN ; WANG JUNXIANG ; CAO MENGXIANG ; WU ZHONGDAI</creatorcontrib><description>The invention discloses an ocean vessel satellite communication network flow prediction method, which comprises the following steps: acquiring a network flow data sample generated by an ocean vessel based on satellite communication, and generating a first time sequence data set from the network flow data sample according to a flow time sequence; preprocessing the first time sequence data set to obtain a second time sequence data set; adopting TCN to extract short-term local features of the second time sequence data set; establishing a prediction model by adopting LSTM; and obtaining a predicted value of the ship network flow through the prediction model. According to the method, high and low frequency information is extracted through short-term local dependence in the TCN learning time sequence, long-time dependence in the time sequence is effectively captured through the LSTM, and the method for predicting the ocean vessel network flow is high in accuracy and good in robustness.
本发明公开了一种远洋船舶卫星通信网络流量预测方法,包含步骤</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230530&DB=EPODOC&CC=CN&NR=116192667A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230530&DB=EPODOC&CC=CN&NR=116192667A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU JIN</creatorcontrib><creatorcontrib>WANG JUNXIANG</creatorcontrib><creatorcontrib>CAO MENGXIANG</creatorcontrib><creatorcontrib>WU ZHONGDAI</creatorcontrib><title>Ocean vessel satellite network flow prediction method, model and gateway</title><description>The invention discloses an ocean vessel satellite communication network flow prediction method, which comprises the following steps: acquiring a network flow data sample generated by an ocean vessel based on satellite communication, and generating a first time sequence data set from the network flow data sample according to a flow time sequence; preprocessing the first time sequence data set to obtain a second time sequence data set; adopting TCN to extract short-term local features of the second time sequence data set; establishing a prediction model by adopting LSTM; and obtaining a predicted value of the ship network flow through the prediction model. According to the method, high and low frequency information is extracted through short-term local dependence in the TCN learning time sequence, long-time dependence in the time sequence is effectively captured through the LSTM, and the method for predicting the ocean vessel network flow is high in accuracy and good in robustness.
本发明公开了一种远洋船舶卫星通信网络流量预测方法,包含步骤</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPDwT05NzFMoSy0uTs1RKE4sSc3JySxJVchLLSnPL8pWSMvJL1coKEpNyUwuyczPU8hNLcnIT9FRyM1PAapPzEtRSAfqKU-s5GFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpQDPjnf0MDc0MLY3MzMwdjYlRAwC4ajRy</recordid><startdate>20230530</startdate><enddate>20230530</enddate><creator>LIU JIN</creator><creator>WANG JUNXIANG</creator><creator>CAO MENGXIANG</creator><creator>WU ZHONGDAI</creator><scope>EVB</scope></search><sort><creationdate>20230530</creationdate><title>Ocean vessel satellite network flow prediction method, model and gateway</title><author>LIU JIN ; WANG JUNXIANG ; CAO MENGXIANG ; WU ZHONGDAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116192667A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU JIN</creatorcontrib><creatorcontrib>WANG JUNXIANG</creatorcontrib><creatorcontrib>CAO MENGXIANG</creatorcontrib><creatorcontrib>WU ZHONGDAI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU JIN</au><au>WANG JUNXIANG</au><au>CAO MENGXIANG</au><au>WU ZHONGDAI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Ocean vessel satellite network flow prediction method, model and gateway</title><date>2023-05-30</date><risdate>2023</risdate><abstract>The invention discloses an ocean vessel satellite communication network flow prediction method, which comprises the following steps: acquiring a network flow data sample generated by an ocean vessel based on satellite communication, and generating a first time sequence data set from the network flow data sample according to a flow time sequence; preprocessing the first time sequence data set to obtain a second time sequence data set; adopting TCN to extract short-term local features of the second time sequence data set; establishing a prediction model by adopting LSTM; and obtaining a predicted value of the ship network flow through the prediction model. According to the method, high and low frequency information is extracted through short-term local dependence in the TCN learning time sequence, long-time dependence in the time sequence is effectively captured through the LSTM, and the method for predicting the ocean vessel network flow is high in accuracy and good in robustness.
本发明公开了一种远洋船舶卫星通信网络流量预测方法,包含步骤</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116192667A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRICITY PHYSICS TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION |
title | Ocean vessel satellite network flow prediction method, model and gateway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T17%3A58%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20JIN&rft.date=2023-05-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116192667A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |