Coronary atherosclerotic heart disease diagnosis recommendation method
The invention discloses a coronary atherosclerotic heart disease diagnosis recommendation method. The method comprises the following steps: step 1, case data mining; step 2, information structured extraction; step 3, data set processing; step 4, data exploratory analysis; 5, automatically screening...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | CHEN LONG QU XINKAI YOU LIJUE YUAN WENBIN XU WEI WEN ZHENGGANG |
description | The invention discloses a coronary atherosclerotic heart disease diagnosis recommendation method. The method comprises the following steps: step 1, case data mining; step 2, information structured extraction; step 3, data set processing; step 4, data exploratory analysis; 5, automatically screening variables; step 6, machine learning modeling; step 7, evaluating a modeling process; 8, deploying the model; according to the coronary atherosclerotic heart disease diagnosis method, the cases of the patient are taken as the training data set to be substituted into the machine learning model for iterative learning to form the coronary atherosclerotic heart disease diagnosis model, so that the disease of the patient is diagnosed and recommended by using the model, the misdiagnosis condition caused by manual diagnosis is avoided, and the diagnosis efficiency of the coronary atherosclerotic heart disease is improved. Meanwhile, automatic judgment is carried out in the diagnosis process according to rules of clinical g |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116189876A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116189876A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116189876A3</originalsourceid><addsrcrecordid>eNqNyjEOwjAQBVE3FAi4gzkAhYUUQhlZRFRU9NHK_mBLsTfybsPtScEBaOY1szWj58aV2seSJjSWMK_VHGwCNbUxC0iwSu_KksU2BC4FNZJmrrZAE8e92bxoFhx-7sxxvD39_YSFJ8hCARU6-Ydzneuv_aUbzv88X6zqNKw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Coronary atherosclerotic heart disease diagnosis recommendation method</title><source>esp@cenet</source><creator>CHEN LONG ; QU XINKAI ; YOU LIJUE ; YUAN WENBIN ; XU WEI ; WEN ZHENGGANG</creator><creatorcontrib>CHEN LONG ; QU XINKAI ; YOU LIJUE ; YUAN WENBIN ; XU WEI ; WEN ZHENGGANG</creatorcontrib><description>The invention discloses a coronary atherosclerotic heart disease diagnosis recommendation method. The method comprises the following steps: step 1, case data mining; step 2, information structured extraction; step 3, data set processing; step 4, data exploratory analysis; 5, automatically screening variables; step 6, machine learning modeling; step 7, evaluating a modeling process; 8, deploying the model; according to the coronary atherosclerotic heart disease diagnosis method, the cases of the patient are taken as the training data set to be substituted into the machine learning model for iterative learning to form the coronary atherosclerotic heart disease diagnosis model, so that the disease of the patient is diagnosed and recommended by using the model, the misdiagnosis condition caused by manual diagnosis is avoided, and the diagnosis efficiency of the coronary atherosclerotic heart disease is improved. Meanwhile, automatic judgment is carried out in the diagnosis process according to rules of clinical g</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230530&DB=EPODOC&CC=CN&NR=116189876A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230530&DB=EPODOC&CC=CN&NR=116189876A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN LONG</creatorcontrib><creatorcontrib>QU XINKAI</creatorcontrib><creatorcontrib>YOU LIJUE</creatorcontrib><creatorcontrib>YUAN WENBIN</creatorcontrib><creatorcontrib>XU WEI</creatorcontrib><creatorcontrib>WEN ZHENGGANG</creatorcontrib><title>Coronary atherosclerotic heart disease diagnosis recommendation method</title><description>The invention discloses a coronary atherosclerotic heart disease diagnosis recommendation method. The method comprises the following steps: step 1, case data mining; step 2, information structured extraction; step 3, data set processing; step 4, data exploratory analysis; 5, automatically screening variables; step 6, machine learning modeling; step 7, evaluating a modeling process; 8, deploying the model; according to the coronary atherosclerotic heart disease diagnosis method, the cases of the patient are taken as the training data set to be substituted into the machine learning model for iterative learning to form the coronary atherosclerotic heart disease diagnosis model, so that the disease of the patient is diagnosed and recommended by using the model, the misdiagnosis condition caused by manual diagnosis is avoided, and the diagnosis efficiency of the coronary atherosclerotic heart disease is improved. Meanwhile, automatic judgment is carried out in the diagnosis process according to rules of clinical g</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEOwjAQBVE3FAi4gzkAhYUUQhlZRFRU9NHK_mBLsTfybsPtScEBaOY1szWj58aV2seSJjSWMK_VHGwCNbUxC0iwSu_KksU2BC4FNZJmrrZAE8e92bxoFhx-7sxxvD39_YSFJ8hCARU6-Ydzneuv_aUbzv88X6zqNKw</recordid><startdate>20230530</startdate><enddate>20230530</enddate><creator>CHEN LONG</creator><creator>QU XINKAI</creator><creator>YOU LIJUE</creator><creator>YUAN WENBIN</creator><creator>XU WEI</creator><creator>WEN ZHENGGANG</creator><scope>EVB</scope></search><sort><creationdate>20230530</creationdate><title>Coronary atherosclerotic heart disease diagnosis recommendation method</title><author>CHEN LONG ; QU XINKAI ; YOU LIJUE ; YUAN WENBIN ; XU WEI ; WEN ZHENGGANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116189876A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN LONG</creatorcontrib><creatorcontrib>QU XINKAI</creatorcontrib><creatorcontrib>YOU LIJUE</creatorcontrib><creatorcontrib>YUAN WENBIN</creatorcontrib><creatorcontrib>XU WEI</creatorcontrib><creatorcontrib>WEN ZHENGGANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN LONG</au><au>QU XINKAI</au><au>YOU LIJUE</au><au>YUAN WENBIN</au><au>XU WEI</au><au>WEN ZHENGGANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Coronary atherosclerotic heart disease diagnosis recommendation method</title><date>2023-05-30</date><risdate>2023</risdate><abstract>The invention discloses a coronary atherosclerotic heart disease diagnosis recommendation method. The method comprises the following steps: step 1, case data mining; step 2, information structured extraction; step 3, data set processing; step 4, data exploratory analysis; 5, automatically screening variables; step 6, machine learning modeling; step 7, evaluating a modeling process; 8, deploying the model; according to the coronary atherosclerotic heart disease diagnosis method, the cases of the patient are taken as the training data set to be substituted into the machine learning model for iterative learning to form the coronary atherosclerotic heart disease diagnosis model, so that the disease of the patient is diagnosed and recommended by using the model, the misdiagnosis condition caused by manual diagnosis is avoided, and the diagnosis efficiency of the coronary atherosclerotic heart disease is improved. Meanwhile, automatic judgment is carried out in the diagnosis process according to rules of clinical g</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116189876A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS PHYSICS |
title | Coronary atherosclerotic heart disease diagnosis recommendation method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A59%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20LONG&rft.date=2023-05-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116189876A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |