Space-time multi-source offshore water quality time sequence prediction method of LSTM coupling mechanism model

The invention relates to the technical field of data prediction, in particular to a time-space multi-source offshore water quality time sequence prediction method of an LSTM coupling mechanism model, which comprises the following steps: collecting water area monitoring data and preprocessing; carryi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: REN XIUWEN, WANG WENJING, CHEN ZHONGYING, ZHANG YINGMIN, ZHENG CHUNJU, ZHOU QUAN, WANG YISHU, WEI SIYE, TU HUAWEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator REN XIUWEN
WANG WENJING
CHEN ZHONGYING
ZHANG YINGMIN
ZHENG CHUNJU
ZHOU QUAN
WANG YISHU
WEI SIYE
TU HUAWEI
description The invention relates to the technical field of data prediction, in particular to a time-space multi-source offshore water quality time sequence prediction method of an LSTM coupling mechanism model, which comprises the following steps: collecting water area monitoring data and preprocessing; carrying out pollution source accounting based on the monitoring data; building a new LSTM network time sequence water quality prediction model of a double-stage attention weight optimization mechanism based on a water quality time sequence prediction machine learning algorithm basic library, and fusing the new LSTM network time sequence water quality prediction model with a graph convolutional neural network; a three-dimensional tidal current dynamic model is built based on the fusion algorithm, and time sequence prediction of the offshore water quality is achieved. According to the invention, an LSTM network time sequence water quality prediction new model of a double-stage attention weight optimization mechanism is ad
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116187210A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116187210A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116187210A3</originalsourceid><addsrcrecordid>eNqNzkEKwjAQBdBuXIh6h_EABaOgbqUoLtRN3ZeQTu1AkkmTCeLtreIBXH34vA9_WnAdtMFSyCG4bIXKxDkaBO661HNEeGrBCEPWluQFX5hwyOhHFCK2ZITYg0PpuR1ncKnvVzCcgyX_GHvTa0_JgeMW7byYdNomXPxyVixPx3t1LjFwg-lzxqM01U2prdrv1mp12Pxj3jHHQxs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Space-time multi-source offshore water quality time sequence prediction method of LSTM coupling mechanism model</title><source>esp@cenet</source><creator>REN XIUWEN ; WANG WENJING ; CHEN ZHONGYING ; ZHANG YINGMIN ; ZHENG CHUNJU ; ZHOU QUAN ; WANG YISHU ; WEI SIYE ; TU HUAWEI</creator><creatorcontrib>REN XIUWEN ; WANG WENJING ; CHEN ZHONGYING ; ZHANG YINGMIN ; ZHENG CHUNJU ; ZHOU QUAN ; WANG YISHU ; WEI SIYE ; TU HUAWEI</creatorcontrib><description>The invention relates to the technical field of data prediction, in particular to a time-space multi-source offshore water quality time sequence prediction method of an LSTM coupling mechanism model, which comprises the following steps: collecting water area monitoring data and preprocessing; carrying out pollution source accounting based on the monitoring data; building a new LSTM network time sequence water quality prediction model of a double-stage attention weight optimization mechanism based on a water quality time sequence prediction machine learning algorithm basic library, and fusing the new LSTM network time sequence water quality prediction model with a graph convolutional neural network; a three-dimensional tidal current dynamic model is built based on the fusion algorithm, and time sequence prediction of the offshore water quality is achieved. According to the invention, an LSTM network time sequence water quality prediction new model of a double-stage attention weight optimization mechanism is ad</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230530&amp;DB=EPODOC&amp;CC=CN&amp;NR=116187210A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230530&amp;DB=EPODOC&amp;CC=CN&amp;NR=116187210A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>REN XIUWEN</creatorcontrib><creatorcontrib>WANG WENJING</creatorcontrib><creatorcontrib>CHEN ZHONGYING</creatorcontrib><creatorcontrib>ZHANG YINGMIN</creatorcontrib><creatorcontrib>ZHENG CHUNJU</creatorcontrib><creatorcontrib>ZHOU QUAN</creatorcontrib><creatorcontrib>WANG YISHU</creatorcontrib><creatorcontrib>WEI SIYE</creatorcontrib><creatorcontrib>TU HUAWEI</creatorcontrib><title>Space-time multi-source offshore water quality time sequence prediction method of LSTM coupling mechanism model</title><description>The invention relates to the technical field of data prediction, in particular to a time-space multi-source offshore water quality time sequence prediction method of an LSTM coupling mechanism model, which comprises the following steps: collecting water area monitoring data and preprocessing; carrying out pollution source accounting based on the monitoring data; building a new LSTM network time sequence water quality prediction model of a double-stage attention weight optimization mechanism based on a water quality time sequence prediction machine learning algorithm basic library, and fusing the new LSTM network time sequence water quality prediction model with a graph convolutional neural network; a three-dimensional tidal current dynamic model is built based on the fusion algorithm, and time sequence prediction of the offshore water quality is achieved. According to the invention, an LSTM network time sequence water quality prediction new model of a double-stage attention weight optimization mechanism is ad</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzkEKwjAQBdBuXIh6h_EABaOgbqUoLtRN3ZeQTu1AkkmTCeLtreIBXH34vA9_WnAdtMFSyCG4bIXKxDkaBO661HNEeGrBCEPWluQFX5hwyOhHFCK2ZITYg0PpuR1ncKnvVzCcgyX_GHvTa0_JgeMW7byYdNomXPxyVixPx3t1LjFwg-lzxqM01U2prdrv1mp12Pxj3jHHQxs</recordid><startdate>20230530</startdate><enddate>20230530</enddate><creator>REN XIUWEN</creator><creator>WANG WENJING</creator><creator>CHEN ZHONGYING</creator><creator>ZHANG YINGMIN</creator><creator>ZHENG CHUNJU</creator><creator>ZHOU QUAN</creator><creator>WANG YISHU</creator><creator>WEI SIYE</creator><creator>TU HUAWEI</creator><scope>EVB</scope></search><sort><creationdate>20230530</creationdate><title>Space-time multi-source offshore water quality time sequence prediction method of LSTM coupling mechanism model</title><author>REN XIUWEN ; WANG WENJING ; CHEN ZHONGYING ; ZHANG YINGMIN ; ZHENG CHUNJU ; ZHOU QUAN ; WANG YISHU ; WEI SIYE ; TU HUAWEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116187210A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>REN XIUWEN</creatorcontrib><creatorcontrib>WANG WENJING</creatorcontrib><creatorcontrib>CHEN ZHONGYING</creatorcontrib><creatorcontrib>ZHANG YINGMIN</creatorcontrib><creatorcontrib>ZHENG CHUNJU</creatorcontrib><creatorcontrib>ZHOU QUAN</creatorcontrib><creatorcontrib>WANG YISHU</creatorcontrib><creatorcontrib>WEI SIYE</creatorcontrib><creatorcontrib>TU HUAWEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>REN XIUWEN</au><au>WANG WENJING</au><au>CHEN ZHONGYING</au><au>ZHANG YINGMIN</au><au>ZHENG CHUNJU</au><au>ZHOU QUAN</au><au>WANG YISHU</au><au>WEI SIYE</au><au>TU HUAWEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Space-time multi-source offshore water quality time sequence prediction method of LSTM coupling mechanism model</title><date>2023-05-30</date><risdate>2023</risdate><abstract>The invention relates to the technical field of data prediction, in particular to a time-space multi-source offshore water quality time sequence prediction method of an LSTM coupling mechanism model, which comprises the following steps: collecting water area monitoring data and preprocessing; carrying out pollution source accounting based on the monitoring data; building a new LSTM network time sequence water quality prediction model of a double-stage attention weight optimization mechanism based on a water quality time sequence prediction machine learning algorithm basic library, and fusing the new LSTM network time sequence water quality prediction model with a graph convolutional neural network; a three-dimensional tidal current dynamic model is built based on the fusion algorithm, and time sequence prediction of the offshore water quality is achieved. According to the invention, an LSTM network time sequence water quality prediction new model of a double-stage attention weight optimization mechanism is ad</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116187210A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Space-time multi-source offshore water quality time sequence prediction method of LSTM coupling mechanism model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=REN%20XIUWEN&rft.date=2023-05-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116187210A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true