Space-time multi-source offshore water quality time sequence prediction method of LSTM coupling mechanism model
The invention relates to the technical field of data prediction, in particular to a time-space multi-source offshore water quality time sequence prediction method of an LSTM coupling mechanism model, which comprises the following steps: collecting water area monitoring data and preprocessing; carryi...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | REN XIUWEN WANG WENJING CHEN ZHONGYING ZHANG YINGMIN ZHENG CHUNJU ZHOU QUAN WANG YISHU WEI SIYE TU HUAWEI |
description | The invention relates to the technical field of data prediction, in particular to a time-space multi-source offshore water quality time sequence prediction method of an LSTM coupling mechanism model, which comprises the following steps: collecting water area monitoring data and preprocessing; carrying out pollution source accounting based on the monitoring data; building a new LSTM network time sequence water quality prediction model of a double-stage attention weight optimization mechanism based on a water quality time sequence prediction machine learning algorithm basic library, and fusing the new LSTM network time sequence water quality prediction model with a graph convolutional neural network; a three-dimensional tidal current dynamic model is built based on the fusion algorithm, and time sequence prediction of the offshore water quality is achieved. According to the invention, an LSTM network time sequence water quality prediction new model of a double-stage attention weight optimization mechanism is ad |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116187210A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116187210A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116187210A3</originalsourceid><addsrcrecordid>eNqNzkEKwjAQBdBuXIh6h_EABaOgbqUoLtRN3ZeQTu1AkkmTCeLtreIBXH34vA9_WnAdtMFSyCG4bIXKxDkaBO661HNEeGrBCEPWluQFX5hwyOhHFCK2ZITYg0PpuR1ncKnvVzCcgyX_GHvTa0_JgeMW7byYdNomXPxyVixPx3t1LjFwg-lzxqM01U2prdrv1mp12Pxj3jHHQxs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Space-time multi-source offshore water quality time sequence prediction method of LSTM coupling mechanism model</title><source>esp@cenet</source><creator>REN XIUWEN ; WANG WENJING ; CHEN ZHONGYING ; ZHANG YINGMIN ; ZHENG CHUNJU ; ZHOU QUAN ; WANG YISHU ; WEI SIYE ; TU HUAWEI</creator><creatorcontrib>REN XIUWEN ; WANG WENJING ; CHEN ZHONGYING ; ZHANG YINGMIN ; ZHENG CHUNJU ; ZHOU QUAN ; WANG YISHU ; WEI SIYE ; TU HUAWEI</creatorcontrib><description>The invention relates to the technical field of data prediction, in particular to a time-space multi-source offshore water quality time sequence prediction method of an LSTM coupling mechanism model, which comprises the following steps: collecting water area monitoring data and preprocessing; carrying out pollution source accounting based on the monitoring data; building a new LSTM network time sequence water quality prediction model of a double-stage attention weight optimization mechanism based on a water quality time sequence prediction machine learning algorithm basic library, and fusing the new LSTM network time sequence water quality prediction model with a graph convolutional neural network; a three-dimensional tidal current dynamic model is built based on the fusion algorithm, and time sequence prediction of the offshore water quality is achieved. According to the invention, an LSTM network time sequence water quality prediction new model of a double-stage attention weight optimization mechanism is ad</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230530&DB=EPODOC&CC=CN&NR=116187210A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230530&DB=EPODOC&CC=CN&NR=116187210A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>REN XIUWEN</creatorcontrib><creatorcontrib>WANG WENJING</creatorcontrib><creatorcontrib>CHEN ZHONGYING</creatorcontrib><creatorcontrib>ZHANG YINGMIN</creatorcontrib><creatorcontrib>ZHENG CHUNJU</creatorcontrib><creatorcontrib>ZHOU QUAN</creatorcontrib><creatorcontrib>WANG YISHU</creatorcontrib><creatorcontrib>WEI SIYE</creatorcontrib><creatorcontrib>TU HUAWEI</creatorcontrib><title>Space-time multi-source offshore water quality time sequence prediction method of LSTM coupling mechanism model</title><description>The invention relates to the technical field of data prediction, in particular to a time-space multi-source offshore water quality time sequence prediction method of an LSTM coupling mechanism model, which comprises the following steps: collecting water area monitoring data and preprocessing; carrying out pollution source accounting based on the monitoring data; building a new LSTM network time sequence water quality prediction model of a double-stage attention weight optimization mechanism based on a water quality time sequence prediction machine learning algorithm basic library, and fusing the new LSTM network time sequence water quality prediction model with a graph convolutional neural network; a three-dimensional tidal current dynamic model is built based on the fusion algorithm, and time sequence prediction of the offshore water quality is achieved. According to the invention, an LSTM network time sequence water quality prediction new model of a double-stage attention weight optimization mechanism is ad</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzkEKwjAQBdBuXIh6h_EABaOgbqUoLtRN3ZeQTu1AkkmTCeLtreIBXH34vA9_WnAdtMFSyCG4bIXKxDkaBO661HNEeGrBCEPWluQFX5hwyOhHFCK2ZITYg0PpuR1ncKnvVzCcgyX_GHvTa0_JgeMW7byYdNomXPxyVixPx3t1LjFwg-lzxqM01U2prdrv1mp12Pxj3jHHQxs</recordid><startdate>20230530</startdate><enddate>20230530</enddate><creator>REN XIUWEN</creator><creator>WANG WENJING</creator><creator>CHEN ZHONGYING</creator><creator>ZHANG YINGMIN</creator><creator>ZHENG CHUNJU</creator><creator>ZHOU QUAN</creator><creator>WANG YISHU</creator><creator>WEI SIYE</creator><creator>TU HUAWEI</creator><scope>EVB</scope></search><sort><creationdate>20230530</creationdate><title>Space-time multi-source offshore water quality time sequence prediction method of LSTM coupling mechanism model</title><author>REN XIUWEN ; WANG WENJING ; CHEN ZHONGYING ; ZHANG YINGMIN ; ZHENG CHUNJU ; ZHOU QUAN ; WANG YISHU ; WEI SIYE ; TU HUAWEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116187210A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>REN XIUWEN</creatorcontrib><creatorcontrib>WANG WENJING</creatorcontrib><creatorcontrib>CHEN ZHONGYING</creatorcontrib><creatorcontrib>ZHANG YINGMIN</creatorcontrib><creatorcontrib>ZHENG CHUNJU</creatorcontrib><creatorcontrib>ZHOU QUAN</creatorcontrib><creatorcontrib>WANG YISHU</creatorcontrib><creatorcontrib>WEI SIYE</creatorcontrib><creatorcontrib>TU HUAWEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>REN XIUWEN</au><au>WANG WENJING</au><au>CHEN ZHONGYING</au><au>ZHANG YINGMIN</au><au>ZHENG CHUNJU</au><au>ZHOU QUAN</au><au>WANG YISHU</au><au>WEI SIYE</au><au>TU HUAWEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Space-time multi-source offshore water quality time sequence prediction method of LSTM coupling mechanism model</title><date>2023-05-30</date><risdate>2023</risdate><abstract>The invention relates to the technical field of data prediction, in particular to a time-space multi-source offshore water quality time sequence prediction method of an LSTM coupling mechanism model, which comprises the following steps: collecting water area monitoring data and preprocessing; carrying out pollution source accounting based on the monitoring data; building a new LSTM network time sequence water quality prediction model of a double-stage attention weight optimization mechanism based on a water quality time sequence prediction machine learning algorithm basic library, and fusing the new LSTM network time sequence water quality prediction model with a graph convolutional neural network; a three-dimensional tidal current dynamic model is built based on the fusion algorithm, and time sequence prediction of the offshore water quality is achieved. According to the invention, an LSTM network time sequence water quality prediction new model of a double-stage attention weight optimization mechanism is ad</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116187210A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Space-time multi-source offshore water quality time sequence prediction method of LSTM coupling mechanism model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=REN%20XIUWEN&rft.date=2023-05-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116187210A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |