Hyperspectral remote sensing image reconstruction method

The invention discloses a hyperspectral remote sensing image reconstruction method. The method comprises the following steps: acquiring a hyperspectral remote sensing image; sequentially carrying out geometric correction and motion blur elimination processing on the hyperspectral remote sensing imag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LONG YONGBING, XIE ZIRAN, ZHAO JING, LYU JINSHENG, LAN YUBIN, LIU WENTAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LONG YONGBING
XIE ZIRAN
ZHAO JING
LYU JINSHENG
LAN YUBIN
LIU WENTAO
description The invention discloses a hyperspectral remote sensing image reconstruction method. The method comprises the following steps: acquiring a hyperspectral remote sensing image; sequentially carrying out geometric correction and motion blur elimination processing on the hyperspectral remote sensing image; obtaining a preprocessed hyperspectral remote sensing image; synthesizing the preprocessed hyperspectral remote sensing images into corresponding RGB images, and constructing a training data set; training the dense connection convolutional neural network model by adopting the training data set until the dense connection convolutional neural network model converges to obtain an optimized dense connection convolutional neural network model; and inputting a to-be-reconstructed RGB image into the optimized dense connection convolutional neural network model to output a corresponding hyperspectral remote sensing image. According to the method, the spectrum reconstruction precision can be improved, meanwhile, the dens
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116168104A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116168104A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116168104A3</originalsourceid><addsrcrecordid>eNrjZLDwqCxILSouSE0uKUrMUShKzc0vSVUoTs0rzsxLV8jMTUxPBQom5-cVlxSVJpdk5ucp5KaWZOSn8DCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSSeGc_Q0MzQzMLQwMTR2Ni1AAAccYvJg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Hyperspectral remote sensing image reconstruction method</title><source>esp@cenet</source><creator>LONG YONGBING ; XIE ZIRAN ; ZHAO JING ; LYU JINSHENG ; LAN YUBIN ; LIU WENTAO</creator><creatorcontrib>LONG YONGBING ; XIE ZIRAN ; ZHAO JING ; LYU JINSHENG ; LAN YUBIN ; LIU WENTAO</creatorcontrib><description>The invention discloses a hyperspectral remote sensing image reconstruction method. The method comprises the following steps: acquiring a hyperspectral remote sensing image; sequentially carrying out geometric correction and motion blur elimination processing on the hyperspectral remote sensing image; obtaining a preprocessed hyperspectral remote sensing image; synthesizing the preprocessed hyperspectral remote sensing images into corresponding RGB images, and constructing a training data set; training the dense connection convolutional neural network model by adopting the training data set until the dense connection convolutional neural network model converges to obtain an optimized dense connection convolutional neural network model; and inputting a to-be-reconstructed RGB image into the optimized dense connection convolutional neural network model to output a corresponding hyperspectral remote sensing image. According to the method, the spectrum reconstruction precision can be improved, meanwhile, the dens</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230526&amp;DB=EPODOC&amp;CC=CN&amp;NR=116168104A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230526&amp;DB=EPODOC&amp;CC=CN&amp;NR=116168104A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LONG YONGBING</creatorcontrib><creatorcontrib>XIE ZIRAN</creatorcontrib><creatorcontrib>ZHAO JING</creatorcontrib><creatorcontrib>LYU JINSHENG</creatorcontrib><creatorcontrib>LAN YUBIN</creatorcontrib><creatorcontrib>LIU WENTAO</creatorcontrib><title>Hyperspectral remote sensing image reconstruction method</title><description>The invention discloses a hyperspectral remote sensing image reconstruction method. The method comprises the following steps: acquiring a hyperspectral remote sensing image; sequentially carrying out geometric correction and motion blur elimination processing on the hyperspectral remote sensing image; obtaining a preprocessed hyperspectral remote sensing image; synthesizing the preprocessed hyperspectral remote sensing images into corresponding RGB images, and constructing a training data set; training the dense connection convolutional neural network model by adopting the training data set until the dense connection convolutional neural network model converges to obtain an optimized dense connection convolutional neural network model; and inputting a to-be-reconstructed RGB image into the optimized dense connection convolutional neural network model to output a corresponding hyperspectral remote sensing image. According to the method, the spectrum reconstruction precision can be improved, meanwhile, the dens</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLDwqCxILSouSE0uKUrMUShKzc0vSVUoTs0rzsxLV8jMTUxPBQom5-cVlxSVJpdk5ucp5KaWZOSn8DCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxOTUvNSSeGc_Q0MzQzMLQwMTR2Ni1AAAccYvJg</recordid><startdate>20230526</startdate><enddate>20230526</enddate><creator>LONG YONGBING</creator><creator>XIE ZIRAN</creator><creator>ZHAO JING</creator><creator>LYU JINSHENG</creator><creator>LAN YUBIN</creator><creator>LIU WENTAO</creator><scope>EVB</scope></search><sort><creationdate>20230526</creationdate><title>Hyperspectral remote sensing image reconstruction method</title><author>LONG YONGBING ; XIE ZIRAN ; ZHAO JING ; LYU JINSHENG ; LAN YUBIN ; LIU WENTAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116168104A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LONG YONGBING</creatorcontrib><creatorcontrib>XIE ZIRAN</creatorcontrib><creatorcontrib>ZHAO JING</creatorcontrib><creatorcontrib>LYU JINSHENG</creatorcontrib><creatorcontrib>LAN YUBIN</creatorcontrib><creatorcontrib>LIU WENTAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LONG YONGBING</au><au>XIE ZIRAN</au><au>ZHAO JING</au><au>LYU JINSHENG</au><au>LAN YUBIN</au><au>LIU WENTAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Hyperspectral remote sensing image reconstruction method</title><date>2023-05-26</date><risdate>2023</risdate><abstract>The invention discloses a hyperspectral remote sensing image reconstruction method. The method comprises the following steps: acquiring a hyperspectral remote sensing image; sequentially carrying out geometric correction and motion blur elimination processing on the hyperspectral remote sensing image; obtaining a preprocessed hyperspectral remote sensing image; synthesizing the preprocessed hyperspectral remote sensing images into corresponding RGB images, and constructing a training data set; training the dense connection convolutional neural network model by adopting the training data set until the dense connection convolutional neural network model converges to obtain an optimized dense connection convolutional neural network model; and inputting a to-be-reconstructed RGB image into the optimized dense connection convolutional neural network model to output a corresponding hyperspectral remote sensing image. According to the method, the spectrum reconstruction precision can be improved, meanwhile, the dens</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116168104A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Hyperspectral remote sensing image reconstruction method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A58%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LONG%20YONGBING&rft.date=2023-05-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116168104A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true