Automatic machine learning platform and method for network security application

The embodiment of the invention provides a network security application-oriented automatic machine learning platform and method. The platform comprises a data preprocessing module, a sample and label generation module, a feature extraction module and a model training module. The data preprocessing m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIANG QUN, CHEN GANG, DENG QIAOHUA
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIANG QUN
CHEN GANG
DENG QIAOHUA
description The embodiment of the invention provides a network security application-oriented automatic machine learning platform and method. The platform comprises a data preprocessing module, a sample and label generation module, a feature extraction module and a model training module. The data preprocessing module is used for preprocessing the traffic data to obtain a behavior sequence corresponding to the user ID; the sample and label generation module is used for generating a sample and a label corresponding to the sample according to the behavior sequence corresponding to the user ID; the feature extraction module is used for performing feature extraction on the samples to obtain sample features; and the model training module is used for constructing an initial model by adopting a model structure corresponding to the data format of the sample features, and training the initial model by utilizing the sample features and the labels corresponding to the sample features to obtain a target model. In this way, user partic
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116155541A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116155541A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116155541A3</originalsourceid><addsrcrecordid>eNqNjDEOwjAMRbMwIOAO5gAMEYS9qkBMsLBXVurSqIkdJa4Qt6cDB2D6etJ7f20ezaySUIOHhH4MTBAJCwd-QY6og5QEyD0k0lF6WBiY9C1lgkp-LkE_gDnH4JcT4a1ZDRgr7X67Mfvr5dneDpSlo5rR05J37d3as3XOnWxz_Mf5AqIPN5I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automatic machine learning platform and method for network security application</title><source>esp@cenet</source><creator>LIANG QUN ; CHEN GANG ; DENG QIAOHUA</creator><creatorcontrib>LIANG QUN ; CHEN GANG ; DENG QIAOHUA</creatorcontrib><description>The embodiment of the invention provides a network security application-oriented automatic machine learning platform and method. The platform comprises a data preprocessing module, a sample and label generation module, a feature extraction module and a model training module. The data preprocessing module is used for preprocessing the traffic data to obtain a behavior sequence corresponding to the user ID; the sample and label generation module is used for generating a sample and a label corresponding to the sample according to the behavior sequence corresponding to the user ID; the feature extraction module is used for performing feature extraction on the samples to obtain sample features; and the model training module is used for constructing an initial model by adopting a model structure corresponding to the data format of the sample features, and training the initial model by utilizing the sample features and the labels corresponding to the sample features to obtain a target model. In this way, user partic</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230523&amp;DB=EPODOC&amp;CC=CN&amp;NR=116155541A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230523&amp;DB=EPODOC&amp;CC=CN&amp;NR=116155541A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIANG QUN</creatorcontrib><creatorcontrib>CHEN GANG</creatorcontrib><creatorcontrib>DENG QIAOHUA</creatorcontrib><title>Automatic machine learning platform and method for network security application</title><description>The embodiment of the invention provides a network security application-oriented automatic machine learning platform and method. The platform comprises a data preprocessing module, a sample and label generation module, a feature extraction module and a model training module. The data preprocessing module is used for preprocessing the traffic data to obtain a behavior sequence corresponding to the user ID; the sample and label generation module is used for generating a sample and a label corresponding to the sample according to the behavior sequence corresponding to the user ID; the feature extraction module is used for performing feature extraction on the samples to obtain sample features; and the model training module is used for constructing an initial model by adopting a model structure corresponding to the data format of the sample features, and training the initial model by utilizing the sample features and the labels corresponding to the sample features to obtain a target model. In this way, user partic</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEOwjAMRbMwIOAO5gAMEYS9qkBMsLBXVurSqIkdJa4Qt6cDB2D6etJ7f20ezaySUIOHhH4MTBAJCwd-QY6og5QEyD0k0lF6WBiY9C1lgkp-LkE_gDnH4JcT4a1ZDRgr7X67Mfvr5dneDpSlo5rR05J37d3as3XOnWxz_Mf5AqIPN5I</recordid><startdate>20230523</startdate><enddate>20230523</enddate><creator>LIANG QUN</creator><creator>CHEN GANG</creator><creator>DENG QIAOHUA</creator><scope>EVB</scope></search><sort><creationdate>20230523</creationdate><title>Automatic machine learning platform and method for network security application</title><author>LIANG QUN ; CHEN GANG ; DENG QIAOHUA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116155541A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>LIANG QUN</creatorcontrib><creatorcontrib>CHEN GANG</creatorcontrib><creatorcontrib>DENG QIAOHUA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIANG QUN</au><au>CHEN GANG</au><au>DENG QIAOHUA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automatic machine learning platform and method for network security application</title><date>2023-05-23</date><risdate>2023</risdate><abstract>The embodiment of the invention provides a network security application-oriented automatic machine learning platform and method. The platform comprises a data preprocessing module, a sample and label generation module, a feature extraction module and a model training module. The data preprocessing module is used for preprocessing the traffic data to obtain a behavior sequence corresponding to the user ID; the sample and label generation module is used for generating a sample and a label corresponding to the sample according to the behavior sequence corresponding to the user ID; the feature extraction module is used for performing feature extraction on the samples to obtain sample features; and the model training module is used for constructing an initial model by adopting a model structure corresponding to the data format of the sample features, and training the initial model by utilizing the sample features and the labels corresponding to the sample features to obtain a target model. In this way, user partic</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116155541A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Automatic machine learning platform and method for network security application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A05%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIANG%20QUN&rft.date=2023-05-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116155541A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true