Vehicle re-identification method based on cross-context and feature response attention mechanism

The invention relates to the technical field of vehicle re-identification, in particular to a vehicle re-identification method based on a cross-context and feature response attention mechanism, and the method comprises the steps: firstly providing a local mixed cross-context-feature response attenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: TIAN JIACHEN, ZHOU XIAOYING, PANG XIYU, SUN KE, ZHENG MEIFENG, WANG CHENG, LI XI, LI SHITAO, ZHOU HOUREN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator TIAN JIACHEN
ZHOU XIAOYING
PANG XIYU
SUN KE
ZHENG MEIFENG
WANG CHENG
LI XI
LI SHITAO
ZHOU HOUREN
description The invention relates to the technical field of vehicle re-identification, in particular to a vehicle re-identification method based on a cross-context and feature response attention mechanism, and the method comprises the steps: firstly providing a local mixed cross-context-feature response attention mechanism, and designing a channel attention module and a space attention module based on the attention mechanism; the global information and the local information are integrated into a unified system structure in an efficient mode to improve the attention learning efficiency and performance. A channel grouping reduction method and a spatial resolution reduction method are respectively used in the channel and the spatial attention module to reduce the parameter quantity and the calculation burden of the network; and finally, designing to remove similarity constraints, forcing space attention modules on multiple branches to pay attention to different semantic information, and realizing vehicle re-identification.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116152792A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116152792A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116152792A3</originalsourceid><addsrcrecordid>eNqNzLEKwkAQBNA0FqL-w_oBKRJRsZSgWFmJbVzvJtxBsheyK_j5JuIHWA0D82aePe4I0bWgAXn0EItNdGwxCXWwkDw9WeFp7G5IqrlLYngbsXhqwPYaJqt9EgWx2XTxxS6wRO2W2azhVrH65SJbn0-36pKjT_Xo2EFgdXUtil2xLfeH8rj5Z_MBBOs96w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Vehicle re-identification method based on cross-context and feature response attention mechanism</title><source>esp@cenet</source><creator>TIAN JIACHEN ; ZHOU XIAOYING ; PANG XIYU ; SUN KE ; ZHENG MEIFENG ; WANG CHENG ; LI XI ; LI SHITAO ; ZHOU HOUREN</creator><creatorcontrib>TIAN JIACHEN ; ZHOU XIAOYING ; PANG XIYU ; SUN KE ; ZHENG MEIFENG ; WANG CHENG ; LI XI ; LI SHITAO ; ZHOU HOUREN</creatorcontrib><description>The invention relates to the technical field of vehicle re-identification, in particular to a vehicle re-identification method based on a cross-context and feature response attention mechanism, and the method comprises the steps: firstly providing a local mixed cross-context-feature response attention mechanism, and designing a channel attention module and a space attention module based on the attention mechanism; the global information and the local information are integrated into a unified system structure in an efficient mode to improve the attention learning efficiency and performance. A channel grouping reduction method and a spatial resolution reduction method are respectively used in the channel and the spatial attention module to reduce the parameter quantity and the calculation burden of the network; and finally, designing to remove similarity constraints, forcing space attention modules on multiple branches to pay attention to different semantic information, and realizing vehicle re-identification.</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230523&amp;DB=EPODOC&amp;CC=CN&amp;NR=116152792A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230523&amp;DB=EPODOC&amp;CC=CN&amp;NR=116152792A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>TIAN JIACHEN</creatorcontrib><creatorcontrib>ZHOU XIAOYING</creatorcontrib><creatorcontrib>PANG XIYU</creatorcontrib><creatorcontrib>SUN KE</creatorcontrib><creatorcontrib>ZHENG MEIFENG</creatorcontrib><creatorcontrib>WANG CHENG</creatorcontrib><creatorcontrib>LI XI</creatorcontrib><creatorcontrib>LI SHITAO</creatorcontrib><creatorcontrib>ZHOU HOUREN</creatorcontrib><title>Vehicle re-identification method based on cross-context and feature response attention mechanism</title><description>The invention relates to the technical field of vehicle re-identification, in particular to a vehicle re-identification method based on a cross-context and feature response attention mechanism, and the method comprises the steps: firstly providing a local mixed cross-context-feature response attention mechanism, and designing a channel attention module and a space attention module based on the attention mechanism; the global information and the local information are integrated into a unified system structure in an efficient mode to improve the attention learning efficiency and performance. A channel grouping reduction method and a spatial resolution reduction method are respectively used in the channel and the spatial attention module to reduce the parameter quantity and the calculation burden of the network; and finally, designing to remove similarity constraints, forcing space attention modules on multiple branches to pay attention to different semantic information, and realizing vehicle re-identification.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzLEKwkAQBNA0FqL-w_oBKRJRsZSgWFmJbVzvJtxBsheyK_j5JuIHWA0D82aePe4I0bWgAXn0EItNdGwxCXWwkDw9WeFp7G5IqrlLYngbsXhqwPYaJqt9EgWx2XTxxS6wRO2W2azhVrH65SJbn0-36pKjT_Xo2EFgdXUtil2xLfeH8rj5Z_MBBOs96w</recordid><startdate>20230523</startdate><enddate>20230523</enddate><creator>TIAN JIACHEN</creator><creator>ZHOU XIAOYING</creator><creator>PANG XIYU</creator><creator>SUN KE</creator><creator>ZHENG MEIFENG</creator><creator>WANG CHENG</creator><creator>LI XI</creator><creator>LI SHITAO</creator><creator>ZHOU HOUREN</creator><scope>EVB</scope></search><sort><creationdate>20230523</creationdate><title>Vehicle re-identification method based on cross-context and feature response attention mechanism</title><author>TIAN JIACHEN ; ZHOU XIAOYING ; PANG XIYU ; SUN KE ; ZHENG MEIFENG ; WANG CHENG ; LI XI ; LI SHITAO ; ZHOU HOUREN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116152792A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>TIAN JIACHEN</creatorcontrib><creatorcontrib>ZHOU XIAOYING</creatorcontrib><creatorcontrib>PANG XIYU</creatorcontrib><creatorcontrib>SUN KE</creatorcontrib><creatorcontrib>ZHENG MEIFENG</creatorcontrib><creatorcontrib>WANG CHENG</creatorcontrib><creatorcontrib>LI XI</creatorcontrib><creatorcontrib>LI SHITAO</creatorcontrib><creatorcontrib>ZHOU HOUREN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TIAN JIACHEN</au><au>ZHOU XIAOYING</au><au>PANG XIYU</au><au>SUN KE</au><au>ZHENG MEIFENG</au><au>WANG CHENG</au><au>LI XI</au><au>LI SHITAO</au><au>ZHOU HOUREN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Vehicle re-identification method based on cross-context and feature response attention mechanism</title><date>2023-05-23</date><risdate>2023</risdate><abstract>The invention relates to the technical field of vehicle re-identification, in particular to a vehicle re-identification method based on a cross-context and feature response attention mechanism, and the method comprises the steps: firstly providing a local mixed cross-context-feature response attention mechanism, and designing a channel attention module and a space attention module based on the attention mechanism; the global information and the local information are integrated into a unified system structure in an efficient mode to improve the attention learning efficiency and performance. A channel grouping reduction method and a spatial resolution reduction method are respectively used in the channel and the spatial attention module to reduce the parameter quantity and the calculation burden of the network; and finally, designing to remove similarity constraints, forcing space attention modules on multiple branches to pay attention to different semantic information, and realizing vehicle re-identification.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116152792A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Vehicle re-identification method based on cross-context and feature response attention mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A34%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=TIAN%20JIACHEN&rft.date=2023-05-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116152792A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true