Vehicle re-identification method based on cross-context and feature response attention mechanism
The invention relates to the technical field of vehicle re-identification, in particular to a vehicle re-identification method based on a cross-context and feature response attention mechanism, and the method comprises the steps: firstly providing a local mixed cross-context-feature response attenti...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | TIAN JIACHEN ZHOU XIAOYING PANG XIYU SUN KE ZHENG MEIFENG WANG CHENG LI XI LI SHITAO ZHOU HOUREN |
description | The invention relates to the technical field of vehicle re-identification, in particular to a vehicle re-identification method based on a cross-context and feature response attention mechanism, and the method comprises the steps: firstly providing a local mixed cross-context-feature response attention mechanism, and designing a channel attention module and a space attention module based on the attention mechanism; the global information and the local information are integrated into a unified system structure in an efficient mode to improve the attention learning efficiency and performance. A channel grouping reduction method and a spatial resolution reduction method are respectively used in the channel and the spatial attention module to reduce the parameter quantity and the calculation burden of the network; and finally, designing to remove similarity constraints, forcing space attention modules on multiple branches to pay attention to different semantic information, and realizing vehicle re-identification. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116152792A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116152792A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116152792A3</originalsourceid><addsrcrecordid>eNqNzLEKwkAQBNA0FqL-w_oBKRJRsZSgWFmJbVzvJtxBsheyK_j5JuIHWA0D82aePe4I0bWgAXn0EItNdGwxCXWwkDw9WeFp7G5IqrlLYngbsXhqwPYaJqt9EgWx2XTxxS6wRO2W2azhVrH65SJbn0-36pKjT_Xo2EFgdXUtil2xLfeH8rj5Z_MBBOs96w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Vehicle re-identification method based on cross-context and feature response attention mechanism</title><source>esp@cenet</source><creator>TIAN JIACHEN ; ZHOU XIAOYING ; PANG XIYU ; SUN KE ; ZHENG MEIFENG ; WANG CHENG ; LI XI ; LI SHITAO ; ZHOU HOUREN</creator><creatorcontrib>TIAN JIACHEN ; ZHOU XIAOYING ; PANG XIYU ; SUN KE ; ZHENG MEIFENG ; WANG CHENG ; LI XI ; LI SHITAO ; ZHOU HOUREN</creatorcontrib><description>The invention relates to the technical field of vehicle re-identification, in particular to a vehicle re-identification method based on a cross-context and feature response attention mechanism, and the method comprises the steps: firstly providing a local mixed cross-context-feature response attention mechanism, and designing a channel attention module and a space attention module based on the attention mechanism; the global information and the local information are integrated into a unified system structure in an efficient mode to improve the attention learning efficiency and performance. A channel grouping reduction method and a spatial resolution reduction method are respectively used in the channel and the spatial attention module to reduce the parameter quantity and the calculation burden of the network; and finally, designing to remove similarity constraints, forcing space attention modules on multiple branches to pay attention to different semantic information, and realizing vehicle re-identification.</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230523&DB=EPODOC&CC=CN&NR=116152792A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230523&DB=EPODOC&CC=CN&NR=116152792A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>TIAN JIACHEN</creatorcontrib><creatorcontrib>ZHOU XIAOYING</creatorcontrib><creatorcontrib>PANG XIYU</creatorcontrib><creatorcontrib>SUN KE</creatorcontrib><creatorcontrib>ZHENG MEIFENG</creatorcontrib><creatorcontrib>WANG CHENG</creatorcontrib><creatorcontrib>LI XI</creatorcontrib><creatorcontrib>LI SHITAO</creatorcontrib><creatorcontrib>ZHOU HOUREN</creatorcontrib><title>Vehicle re-identification method based on cross-context and feature response attention mechanism</title><description>The invention relates to the technical field of vehicle re-identification, in particular to a vehicle re-identification method based on a cross-context and feature response attention mechanism, and the method comprises the steps: firstly providing a local mixed cross-context-feature response attention mechanism, and designing a channel attention module and a space attention module based on the attention mechanism; the global information and the local information are integrated into a unified system structure in an efficient mode to improve the attention learning efficiency and performance. A channel grouping reduction method and a spatial resolution reduction method are respectively used in the channel and the spatial attention module to reduce the parameter quantity and the calculation burden of the network; and finally, designing to remove similarity constraints, forcing space attention modules on multiple branches to pay attention to different semantic information, and realizing vehicle re-identification.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzLEKwkAQBNA0FqL-w_oBKRJRsZSgWFmJbVzvJtxBsheyK_j5JuIHWA0D82aePe4I0bWgAXn0EItNdGwxCXWwkDw9WeFp7G5IqrlLYngbsXhqwPYaJqt9EgWx2XTxxS6wRO2W2azhVrH65SJbn0-36pKjT_Xo2EFgdXUtil2xLfeH8rj5Z_MBBOs96w</recordid><startdate>20230523</startdate><enddate>20230523</enddate><creator>TIAN JIACHEN</creator><creator>ZHOU XIAOYING</creator><creator>PANG XIYU</creator><creator>SUN KE</creator><creator>ZHENG MEIFENG</creator><creator>WANG CHENG</creator><creator>LI XI</creator><creator>LI SHITAO</creator><creator>ZHOU HOUREN</creator><scope>EVB</scope></search><sort><creationdate>20230523</creationdate><title>Vehicle re-identification method based on cross-context and feature response attention mechanism</title><author>TIAN JIACHEN ; ZHOU XIAOYING ; PANG XIYU ; SUN KE ; ZHENG MEIFENG ; WANG CHENG ; LI XI ; LI SHITAO ; ZHOU HOUREN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116152792A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>TIAN JIACHEN</creatorcontrib><creatorcontrib>ZHOU XIAOYING</creatorcontrib><creatorcontrib>PANG XIYU</creatorcontrib><creatorcontrib>SUN KE</creatorcontrib><creatorcontrib>ZHENG MEIFENG</creatorcontrib><creatorcontrib>WANG CHENG</creatorcontrib><creatorcontrib>LI XI</creatorcontrib><creatorcontrib>LI SHITAO</creatorcontrib><creatorcontrib>ZHOU HOUREN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TIAN JIACHEN</au><au>ZHOU XIAOYING</au><au>PANG XIYU</au><au>SUN KE</au><au>ZHENG MEIFENG</au><au>WANG CHENG</au><au>LI XI</au><au>LI SHITAO</au><au>ZHOU HOUREN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Vehicle re-identification method based on cross-context and feature response attention mechanism</title><date>2023-05-23</date><risdate>2023</risdate><abstract>The invention relates to the technical field of vehicle re-identification, in particular to a vehicle re-identification method based on a cross-context and feature response attention mechanism, and the method comprises the steps: firstly providing a local mixed cross-context-feature response attention mechanism, and designing a channel attention module and a space attention module based on the attention mechanism; the global information and the local information are integrated into a unified system structure in an efficient mode to improve the attention learning efficiency and performance. A channel grouping reduction method and a spatial resolution reduction method are respectively used in the channel and the spatial attention module to reduce the parameter quantity and the calculation burden of the network; and finally, designing to remove similarity constraints, forcing space attention modules on multiple branches to pay attention to different semantic information, and realizing vehicle re-identification.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116152792A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | Vehicle re-identification method based on cross-context and feature response attention mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A34%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=TIAN%20JIACHEN&rft.date=2023-05-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116152792A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |