Multi-modal fusion representation method and system based on semantic similarity matching
The invention discloses a multi-modal fusion representation method and system based on semantic similarity matching, and the method comprises the steps: obtaining a target text, carrying out the preprocessing, and extracting feature words in the target text; the feature words are expanded based on d...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LIU QING DAI QINGYUN LAI PEIYUAN |
description | The invention discloses a multi-modal fusion representation method and system based on semantic similarity matching, and the method comprises the steps: obtaining a target text, carrying out the preprocessing, and extracting feature words in the target text; the feature words are expanded based on dictionaries, pictures and texts, a plurality of expanded dictionary vectors, expanded picture vectors and expanded text vectors are obtained, and corresponding feature vectors are generated; obtaining a reference word according to the current retrieval scene, performing traversal comparison on the reference word and the feature vector, obtaining a matching degree according to similarity calculation, and filtering to obtain the feature vector with the highest matching degree; and performing multi-modal weighted fusion on the dictionary feature vector, the picture feature vector and the text feature vector to form a feature word multi-modal feature vector in the current retrieval scene. According to the method, throu |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116150704A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116150704A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116150704A3</originalsourceid><addsrcrecordid>eNqNijsKwkAQQLexEPUO4wECWfzVEhQbrWyswpidmIH9sTMpcnsVPIDV4_He3Dyuo1euQnLooR-FU4RCuZBQVNSvBtIhOcDoQCZRCvBEIQefJBQwKncgHNhjYZ0goHYDx9fSzHr0QqsfF2Z9Pt2bS0U5tSQZO4qkbXOzdm939aHeHjf_PG9C_DtZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-modal fusion representation method and system based on semantic similarity matching</title><source>esp@cenet</source><creator>LIU QING ; DAI QINGYUN ; LAI PEIYUAN</creator><creatorcontrib>LIU QING ; DAI QINGYUN ; LAI PEIYUAN</creatorcontrib><description>The invention discloses a multi-modal fusion representation method and system based on semantic similarity matching, and the method comprises the steps: obtaining a target text, carrying out the preprocessing, and extracting feature words in the target text; the feature words are expanded based on dictionaries, pictures and texts, a plurality of expanded dictionary vectors, expanded picture vectors and expanded text vectors are obtained, and corresponding feature vectors are generated; obtaining a reference word according to the current retrieval scene, performing traversal comparison on the reference word and the feature vector, obtaining a matching degree according to similarity calculation, and filtering to obtain the feature vector with the highest matching degree; and performing multi-modal weighted fusion on the dictionary feature vector, the picture feature vector and the text feature vector to form a feature word multi-modal feature vector in the current retrieval scene. According to the method, throu</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230523&DB=EPODOC&CC=CN&NR=116150704A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230523&DB=EPODOC&CC=CN&NR=116150704A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU QING</creatorcontrib><creatorcontrib>DAI QINGYUN</creatorcontrib><creatorcontrib>LAI PEIYUAN</creatorcontrib><title>Multi-modal fusion representation method and system based on semantic similarity matching</title><description>The invention discloses a multi-modal fusion representation method and system based on semantic similarity matching, and the method comprises the steps: obtaining a target text, carrying out the preprocessing, and extracting feature words in the target text; the feature words are expanded based on dictionaries, pictures and texts, a plurality of expanded dictionary vectors, expanded picture vectors and expanded text vectors are obtained, and corresponding feature vectors are generated; obtaining a reference word according to the current retrieval scene, performing traversal comparison on the reference word and the feature vector, obtaining a matching degree according to similarity calculation, and filtering to obtain the feature vector with the highest matching degree; and performing multi-modal weighted fusion on the dictionary feature vector, the picture feature vector and the text feature vector to form a feature word multi-modal feature vector in the current retrieval scene. According to the method, throu</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijsKwkAQQLexEPUO4wECWfzVEhQbrWyswpidmIH9sTMpcnsVPIDV4_He3Dyuo1euQnLooR-FU4RCuZBQVNSvBtIhOcDoQCZRCvBEIQefJBQwKncgHNhjYZ0goHYDx9fSzHr0QqsfF2Z9Pt2bS0U5tSQZO4qkbXOzdm939aHeHjf_PG9C_DtZ</recordid><startdate>20230523</startdate><enddate>20230523</enddate><creator>LIU QING</creator><creator>DAI QINGYUN</creator><creator>LAI PEIYUAN</creator><scope>EVB</scope></search><sort><creationdate>20230523</creationdate><title>Multi-modal fusion representation method and system based on semantic similarity matching</title><author>LIU QING ; DAI QINGYUN ; LAI PEIYUAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116150704A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU QING</creatorcontrib><creatorcontrib>DAI QINGYUN</creatorcontrib><creatorcontrib>LAI PEIYUAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU QING</au><au>DAI QINGYUN</au><au>LAI PEIYUAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-modal fusion representation method and system based on semantic similarity matching</title><date>2023-05-23</date><risdate>2023</risdate><abstract>The invention discloses a multi-modal fusion representation method and system based on semantic similarity matching, and the method comprises the steps: obtaining a target text, carrying out the preprocessing, and extracting feature words in the target text; the feature words are expanded based on dictionaries, pictures and texts, a plurality of expanded dictionary vectors, expanded picture vectors and expanded text vectors are obtained, and corresponding feature vectors are generated; obtaining a reference word according to the current retrieval scene, performing traversal comparison on the reference word and the feature vector, obtaining a matching degree according to similarity calculation, and filtering to obtain the feature vector with the highest matching degree; and performing multi-modal weighted fusion on the dictionary feature vector, the picture feature vector and the text feature vector to form a feature word multi-modal feature vector in the current retrieval scene. According to the method, throu</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116150704A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Multi-modal fusion representation method and system based on semantic similarity matching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A32%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20QING&rft.date=2023-05-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116150704A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |