Codebook quantization model training method, search data quantization method and device

The invention provides a codebook quantization model training method and a search data quantization method and device. The training method comprises the following steps: mapping each search sample into B orthogonal spaces by utilizing a processor based on B orthogonal sub-matrixes to obtain B orthog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHEN ENHONG, FENG CHAO, ZHANG JIN, LIAN DEFU, LU ZEPU
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CHEN ENHONG
FENG CHAO
ZHANG JIN
LIAN DEFU
LU ZEPU
description The invention provides a codebook quantization model training method and a search data quantization method and device. The training method comprises the following steps: mapping each search sample into B orthogonal spaces by utilizing a processor based on B orthogonal sub-matrixes to obtain B orthogonal vectors; the processor is utilized to generate a distribution probability matrix according to each orthogonal vector and B center point codebooks of an orthogonal space corresponding to each orthogonal vector, and a center point codebook set comprises B center point codebooks; determining an index corresponding to a maximum value according to the maximum value in the distribution probability matrix, and generating a one-hot coding vector of an orthogonal vector in an orthogonal space; generating an output training vector according to the search sample and the plurality of one-hot coding vectors; inputting the search sample, the central point codebook set, the output training vector and the B orthogonal sub-mat
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116127164A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116127164A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116127164A3</originalsourceid><addsrcrecordid>eNrjZAh3zk9JTcrPz1YoLE3MK8msSizJzM9TyAWK5iiUFCVm5mXmpSvkppZk5KfoKBSnJhYlZyikJJYkoqkHK1BIzEtRSEkty0xO5WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8c5-hoZmhkbmhmYmjsbEqAEAlV46Og</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Codebook quantization model training method, search data quantization method and device</title><source>esp@cenet</source><creator>CHEN ENHONG ; FENG CHAO ; ZHANG JIN ; LIAN DEFU ; LU ZEPU</creator><creatorcontrib>CHEN ENHONG ; FENG CHAO ; ZHANG JIN ; LIAN DEFU ; LU ZEPU</creatorcontrib><description>The invention provides a codebook quantization model training method and a search data quantization method and device. The training method comprises the following steps: mapping each search sample into B orthogonal spaces by utilizing a processor based on B orthogonal sub-matrixes to obtain B orthogonal vectors; the processor is utilized to generate a distribution probability matrix according to each orthogonal vector and B center point codebooks of an orthogonal space corresponding to each orthogonal vector, and a center point codebook set comprises B center point codebooks; determining an index corresponding to a maximum value according to the maximum value in the distribution probability matrix, and generating a one-hot coding vector of an orthogonal vector in an orthogonal space; generating an output training vector according to the search sample and the plurality of one-hot coding vectors; inputting the search sample, the central point codebook set, the output training vector and the B orthogonal sub-mat</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230516&amp;DB=EPODOC&amp;CC=CN&amp;NR=116127164A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230516&amp;DB=EPODOC&amp;CC=CN&amp;NR=116127164A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN ENHONG</creatorcontrib><creatorcontrib>FENG CHAO</creatorcontrib><creatorcontrib>ZHANG JIN</creatorcontrib><creatorcontrib>LIAN DEFU</creatorcontrib><creatorcontrib>LU ZEPU</creatorcontrib><title>Codebook quantization model training method, search data quantization method and device</title><description>The invention provides a codebook quantization model training method and a search data quantization method and device. The training method comprises the following steps: mapping each search sample into B orthogonal spaces by utilizing a processor based on B orthogonal sub-matrixes to obtain B orthogonal vectors; the processor is utilized to generate a distribution probability matrix according to each orthogonal vector and B center point codebooks of an orthogonal space corresponding to each orthogonal vector, and a center point codebook set comprises B center point codebooks; determining an index corresponding to a maximum value according to the maximum value in the distribution probability matrix, and generating a one-hot coding vector of an orthogonal vector in an orthogonal space; generating an output training vector according to the search sample and the plurality of one-hot coding vectors; inputting the search sample, the central point codebook set, the output training vector and the B orthogonal sub-mat</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAh3zk9JTcrPz1YoLE3MK8msSizJzM9TyAWK5iiUFCVm5mXmpSvkppZk5KfoKBSnJhYlZyikJJYkoqkHK1BIzEtRSEkty0xO5WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8c5-hoZmhkbmhmYmjsbEqAEAlV46Og</recordid><startdate>20230516</startdate><enddate>20230516</enddate><creator>CHEN ENHONG</creator><creator>FENG CHAO</creator><creator>ZHANG JIN</creator><creator>LIAN DEFU</creator><creator>LU ZEPU</creator><scope>EVB</scope></search><sort><creationdate>20230516</creationdate><title>Codebook quantization model training method, search data quantization method and device</title><author>CHEN ENHONG ; FENG CHAO ; ZHANG JIN ; LIAN DEFU ; LU ZEPU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116127164A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN ENHONG</creatorcontrib><creatorcontrib>FENG CHAO</creatorcontrib><creatorcontrib>ZHANG JIN</creatorcontrib><creatorcontrib>LIAN DEFU</creatorcontrib><creatorcontrib>LU ZEPU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN ENHONG</au><au>FENG CHAO</au><au>ZHANG JIN</au><au>LIAN DEFU</au><au>LU ZEPU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Codebook quantization model training method, search data quantization method and device</title><date>2023-05-16</date><risdate>2023</risdate><abstract>The invention provides a codebook quantization model training method and a search data quantization method and device. The training method comprises the following steps: mapping each search sample into B orthogonal spaces by utilizing a processor based on B orthogonal sub-matrixes to obtain B orthogonal vectors; the processor is utilized to generate a distribution probability matrix according to each orthogonal vector and B center point codebooks of an orthogonal space corresponding to each orthogonal vector, and a center point codebook set comprises B center point codebooks; determining an index corresponding to a maximum value according to the maximum value in the distribution probability matrix, and generating a one-hot coding vector of an orthogonal vector in an orthogonal space; generating an output training vector according to the search sample and the plurality of one-hot coding vectors; inputting the search sample, the central point codebook set, the output training vector and the B orthogonal sub-mat</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116127164A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Codebook quantization model training method, search data quantization method and device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A26%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20ENHONG&rft.date=2023-05-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116127164A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true