Vehicle detection method, traffic flow statistical method and device
The invention provides a vehicle detection method, a traffic flow statistical method and device, and an application vehicle detection model, the vehicle detection model comprises a backbone network, a fusion network and a prediction network, the method comprises the following steps: using the backbo...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | XU SHAOHUA HUANG YU SHANG SHENGHONG ZOU LEI LI HENG QIN FEIYU |
description | The invention provides a vehicle detection method, a traffic flow statistical method and device, and an application vehicle detection model, the vehicle detection model comprises a backbone network, a fusion network and a prediction network, the method comprises the following steps: using the backbone network to extract multi-scale image features of a vehicle image, the backbone network comprising N C3 modules, the hierarchical structure of each C3 module is a Swin Transform structure, and N is an integer greater than or equal to 2; performing feature fusion on the multi-scale image features by using the fusion network to obtain a plurality of fusion features; and processing each fusion feature by using the prediction network to obtain a plurality of vehicle detection results. According to the method provided by the embodiment of the invention, the vehicles in the vehicle image can be accurately classified and tracked, and the traffic flow can be accurately counted.
本公开提供一种车辆检测方法、车流量统计方法及装置,应用车辆检测模型,所述车辆检测模型包 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116110008A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116110008A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116110008A3</originalsourceid><addsrcrecordid>eNrjZHAJS83ITM5JVUhJLUlNLsnMz1PITS3JyE_RUSgpSkxLy0xWSMvJL1coLkksySwuyUxOzIEqUEjMSwHqKstMTuVhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfHOfoaGZoaGBgYGFo7GxKgBAKtVMps</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Vehicle detection method, traffic flow statistical method and device</title><source>esp@cenet</source><creator>XU SHAOHUA ; HUANG YU ; SHANG SHENGHONG ; ZOU LEI ; LI HENG ; QIN FEIYU</creator><creatorcontrib>XU SHAOHUA ; HUANG YU ; SHANG SHENGHONG ; ZOU LEI ; LI HENG ; QIN FEIYU</creatorcontrib><description>The invention provides a vehicle detection method, a traffic flow statistical method and device, and an application vehicle detection model, the vehicle detection model comprises a backbone network, a fusion network and a prediction network, the method comprises the following steps: using the backbone network to extract multi-scale image features of a vehicle image, the backbone network comprising N C3 modules, the hierarchical structure of each C3 module is a Swin Transform structure, and N is an integer greater than or equal to 2; performing feature fusion on the multi-scale image features by using the fusion network to obtain a plurality of fusion features; and processing each fusion feature by using the prediction network to obtain a plurality of vehicle detection results. According to the method provided by the embodiment of the invention, the vehicles in the vehicle image can be accurately classified and tracked, and the traffic flow can be accurately counted.
本公开提供一种车辆检测方法、车流量统计方法及装置,应用车辆检测模型,所述车辆检测模型包</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; PHYSICS ; SIGNALLING ; TRAFFIC CONTROL SYSTEMS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230512&DB=EPODOC&CC=CN&NR=116110008A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230512&DB=EPODOC&CC=CN&NR=116110008A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XU SHAOHUA</creatorcontrib><creatorcontrib>HUANG YU</creatorcontrib><creatorcontrib>SHANG SHENGHONG</creatorcontrib><creatorcontrib>ZOU LEI</creatorcontrib><creatorcontrib>LI HENG</creatorcontrib><creatorcontrib>QIN FEIYU</creatorcontrib><title>Vehicle detection method, traffic flow statistical method and device</title><description>The invention provides a vehicle detection method, a traffic flow statistical method and device, and an application vehicle detection model, the vehicle detection model comprises a backbone network, a fusion network and a prediction network, the method comprises the following steps: using the backbone network to extract multi-scale image features of a vehicle image, the backbone network comprising N C3 modules, the hierarchical structure of each C3 module is a Swin Transform structure, and N is an integer greater than or equal to 2; performing feature fusion on the multi-scale image features by using the fusion network to obtain a plurality of fusion features; and processing each fusion feature by using the prediction network to obtain a plurality of vehicle detection results. According to the method provided by the embodiment of the invention, the vehicles in the vehicle image can be accurately classified and tracked, and the traffic flow can be accurately counted.
本公开提供一种车辆检测方法、车流量统计方法及装置,应用车辆检测模型,所述车辆检测模型包</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><subject>SIGNALLING</subject><subject>TRAFFIC CONTROL SYSTEMS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAJS83ITM5JVUhJLUlNLsnMz1PITS3JyE_RUSgpSkxLy0xWSMvJL1coLkksySwuyUxOzIEqUEjMSwHqKstMTuVhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfHOfoaGZoaGBgYGFo7GxKgBAKtVMps</recordid><startdate>20230512</startdate><enddate>20230512</enddate><creator>XU SHAOHUA</creator><creator>HUANG YU</creator><creator>SHANG SHENGHONG</creator><creator>ZOU LEI</creator><creator>LI HENG</creator><creator>QIN FEIYU</creator><scope>EVB</scope></search><sort><creationdate>20230512</creationdate><title>Vehicle detection method, traffic flow statistical method and device</title><author>XU SHAOHUA ; HUANG YU ; SHANG SHENGHONG ; ZOU LEI ; LI HENG ; QIN FEIYU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116110008A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><topic>SIGNALLING</topic><topic>TRAFFIC CONTROL SYSTEMS</topic><toplevel>online_resources</toplevel><creatorcontrib>XU SHAOHUA</creatorcontrib><creatorcontrib>HUANG YU</creatorcontrib><creatorcontrib>SHANG SHENGHONG</creatorcontrib><creatorcontrib>ZOU LEI</creatorcontrib><creatorcontrib>LI HENG</creatorcontrib><creatorcontrib>QIN FEIYU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XU SHAOHUA</au><au>HUANG YU</au><au>SHANG SHENGHONG</au><au>ZOU LEI</au><au>LI HENG</au><au>QIN FEIYU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Vehicle detection method, traffic flow statistical method and device</title><date>2023-05-12</date><risdate>2023</risdate><abstract>The invention provides a vehicle detection method, a traffic flow statistical method and device, and an application vehicle detection model, the vehicle detection model comprises a backbone network, a fusion network and a prediction network, the method comprises the following steps: using the backbone network to extract multi-scale image features of a vehicle image, the backbone network comprising N C3 modules, the hierarchical structure of each C3 module is a Swin Transform structure, and N is an integer greater than or equal to 2; performing feature fusion on the multi-scale image features by using the fusion network to obtain a plurality of fusion features; and processing each fusion feature by using the prediction network to obtain a plurality of vehicle detection results. According to the method provided by the embodiment of the invention, the vehicles in the vehicle image can be accurately classified and tracked, and the traffic flow can be accurately counted.
本公开提供一种车辆检测方法、车流量统计方法及装置,应用车辆检测模型,所述车辆检测模型包</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116110008A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING PHYSICS SIGNALLING TRAFFIC CONTROL SYSTEMS |
title | Vehicle detection method, traffic flow statistical method and device |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A45%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XU%20SHAOHUA&rft.date=2023-05-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116110008A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |