Power carbon emission prediction method and device based on integrated learning module

The invention discloses a power carbon emission prediction method and device based on an integrated learning module, features irrelevant to power data can be removed by obtaining historical power carbon emission data and performing correlation analysis on the historical carbon emission data, the num...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIN KEYAO, ZENG ZHENSONG, SHEN YU, QUE DINGFEI, LIN WENBIN, LIU LIN, YANG SIYU, LIN WEIWEI, TU XIAZHE
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIN KEYAO
ZENG ZHENSONG
SHEN YU
QUE DINGFEI
LIN WENBIN
LIU LIN
YANG SIYU
LIN WEIWEI
TU XIAZHE
description The invention discloses a power carbon emission prediction method and device based on an integrated learning module, features irrelevant to power data can be removed by obtaining historical power carbon emission data and performing correlation analysis on the historical carbon emission data, the number of features in a data set is reduced, and the prediction accuracy of the power carbon emission is improved by performing standardization processing on the data. Influences caused by different dimensions or different value ranges among data features are eliminated, finally, multiple groups of predicted values are obtained through different base learners, and then final output is realized through a meta learner, so that the problems of inaccurate models and the like existing in power carbon emission prediction can be effectively solved. Therefore, the workload of related workers is effectively reduced, and the method has a very strong expansion characteristic. 本发明公开一种基于集成学习模块的电力碳排放预测方法及设备,通过获取历史电力碳排放数据后,对历史碳排放数据进
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116108963A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116108963A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116108963A3</originalsourceid><addsrcrecordid>eNqNijsKAjEURdNYiLqH5wIEw8CgpQyKlViI7fAmuc4E8iOJun0juACrcw73zsX9Gt5IpDgNwROcydlUiQnaqPJVhzIFTew1abyMAg2coalOxheMiUstC07e-JFc0E-LpZg92GasflyI9el4684bxNAjR1bwKH13kbKV292-bQ7NP58PMrI5ug</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Power carbon emission prediction method and device based on integrated learning module</title><source>esp@cenet</source><creator>LIN KEYAO ; ZENG ZHENSONG ; SHEN YU ; QUE DINGFEI ; LIN WENBIN ; LIU LIN ; YANG SIYU ; LIN WEIWEI ; TU XIAZHE</creator><creatorcontrib>LIN KEYAO ; ZENG ZHENSONG ; SHEN YU ; QUE DINGFEI ; LIN WENBIN ; LIU LIN ; YANG SIYU ; LIN WEIWEI ; TU XIAZHE</creatorcontrib><description>The invention discloses a power carbon emission prediction method and device based on an integrated learning module, features irrelevant to power data can be removed by obtaining historical power carbon emission data and performing correlation analysis on the historical carbon emission data, the number of features in a data set is reduced, and the prediction accuracy of the power carbon emission is improved by performing standardization processing on the data. Influences caused by different dimensions or different value ranges among data features are eliminated, finally, multiple groups of predicted values are obtained through different base learners, and then final output is realized through a meta learner, so that the problems of inaccurate models and the like existing in power carbon emission prediction can be effectively solved. Therefore, the workload of related workers is effectively reduced, and the method has a very strong expansion characteristic. 本发明公开一种基于集成学习模块的电力碳排放预测方法及设备,通过获取历史电力碳排放数据后,对历史碳排放数据进</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230512&amp;DB=EPODOC&amp;CC=CN&amp;NR=116108963A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230512&amp;DB=EPODOC&amp;CC=CN&amp;NR=116108963A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIN KEYAO</creatorcontrib><creatorcontrib>ZENG ZHENSONG</creatorcontrib><creatorcontrib>SHEN YU</creatorcontrib><creatorcontrib>QUE DINGFEI</creatorcontrib><creatorcontrib>LIN WENBIN</creatorcontrib><creatorcontrib>LIU LIN</creatorcontrib><creatorcontrib>YANG SIYU</creatorcontrib><creatorcontrib>LIN WEIWEI</creatorcontrib><creatorcontrib>TU XIAZHE</creatorcontrib><title>Power carbon emission prediction method and device based on integrated learning module</title><description>The invention discloses a power carbon emission prediction method and device based on an integrated learning module, features irrelevant to power data can be removed by obtaining historical power carbon emission data and performing correlation analysis on the historical carbon emission data, the number of features in a data set is reduced, and the prediction accuracy of the power carbon emission is improved by performing standardization processing on the data. Influences caused by different dimensions or different value ranges among data features are eliminated, finally, multiple groups of predicted values are obtained through different base learners, and then final output is realized through a meta learner, so that the problems of inaccurate models and the like existing in power carbon emission prediction can be effectively solved. Therefore, the workload of related workers is effectively reduced, and the method has a very strong expansion characteristic. 本发明公开一种基于集成学习模块的电力碳排放预测方法及设备,通过获取历史电力碳排放数据后,对历史碳排放数据进</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijsKAjEURdNYiLqH5wIEw8CgpQyKlViI7fAmuc4E8iOJun0juACrcw73zsX9Gt5IpDgNwROcydlUiQnaqPJVhzIFTew1abyMAg2coalOxheMiUstC07e-JFc0E-LpZg92GasflyI9el4684bxNAjR1bwKH13kbKV292-bQ7NP58PMrI5ug</recordid><startdate>20230512</startdate><enddate>20230512</enddate><creator>LIN KEYAO</creator><creator>ZENG ZHENSONG</creator><creator>SHEN YU</creator><creator>QUE DINGFEI</creator><creator>LIN WENBIN</creator><creator>LIU LIN</creator><creator>YANG SIYU</creator><creator>LIN WEIWEI</creator><creator>TU XIAZHE</creator><scope>EVB</scope></search><sort><creationdate>20230512</creationdate><title>Power carbon emission prediction method and device based on integrated learning module</title><author>LIN KEYAO ; ZENG ZHENSONG ; SHEN YU ; QUE DINGFEI ; LIN WENBIN ; LIU LIN ; YANG SIYU ; LIN WEIWEI ; TU XIAZHE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116108963A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>LIN KEYAO</creatorcontrib><creatorcontrib>ZENG ZHENSONG</creatorcontrib><creatorcontrib>SHEN YU</creatorcontrib><creatorcontrib>QUE DINGFEI</creatorcontrib><creatorcontrib>LIN WENBIN</creatorcontrib><creatorcontrib>LIU LIN</creatorcontrib><creatorcontrib>YANG SIYU</creatorcontrib><creatorcontrib>LIN WEIWEI</creatorcontrib><creatorcontrib>TU XIAZHE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIN KEYAO</au><au>ZENG ZHENSONG</au><au>SHEN YU</au><au>QUE DINGFEI</au><au>LIN WENBIN</au><au>LIU LIN</au><au>YANG SIYU</au><au>LIN WEIWEI</au><au>TU XIAZHE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Power carbon emission prediction method and device based on integrated learning module</title><date>2023-05-12</date><risdate>2023</risdate><abstract>The invention discloses a power carbon emission prediction method and device based on an integrated learning module, features irrelevant to power data can be removed by obtaining historical power carbon emission data and performing correlation analysis on the historical carbon emission data, the number of features in a data set is reduced, and the prediction accuracy of the power carbon emission is improved by performing standardization processing on the data. Influences caused by different dimensions or different value ranges among data features are eliminated, finally, multiple groups of predicted values are obtained through different base learners, and then final output is realized through a meta learner, so that the problems of inaccurate models and the like existing in power carbon emission prediction can be effectively solved. Therefore, the workload of related workers is effectively reduced, and the method has a very strong expansion characteristic. 本发明公开一种基于集成学习模块的电力碳排放预测方法及设备,通过获取历史电力碳排放数据后,对历史碳排放数据进</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116108963A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Power carbon emission prediction method and device based on integrated learning module
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A09%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIN%20KEYAO&rft.date=2023-05-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116108963A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true