Infant dangerous action detection and identification method based on pose estimation and improved YOLOXtiny

The invention discloses an infant dangerous action detection and identification method based on pose estimation and improved YOLOXtiny, and the method comprises the steps: obtaining a video frame from a camera, and carrying out the preprocessing of the input video frame; secondly, inputting the prep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHU ZEDE, WANG QISHENG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHU ZEDE
WANG QISHENG
description The invention discloses an infant dangerous action detection and identification method based on pose estimation and improved YOLOXtiny, and the method comprises the steps: obtaining a video frame from a camera, and carrying out the preprocessing of the input video frame; secondly, inputting the preprocessed video frames into a position and attitude estimation algorithm and a YOLOXtiny target detection algorithm improved based on model pruning and a fusion space attention mechanism so as to obtain the number of skeleton points, interested target areas and category detection result data in each frame of picture; wherein the target detection algorithm is obtained by using a self-built data set and training in a transfer learning mode; then, the obtained data are processed and fused, so that the accurate recognition capability of different dangerous actions is improved; and finally, designing rules by utilizing the processed and fused data to judge normal and dangerous action states of the infant and give an alar
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116092187A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116092187A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116092187A3</originalsourceid><addsrcrecordid>eNqNi70KwkAQhNNYiPoO6wMIRsGfUoKiIKax0CqsuYkeentHbhV8e4MKtlYz881MO7lupGJRMixn1P4eiUu1XshA8XEshqyBqK1syW_koBdv6MQRhpocfAQhqnX8u7hQ-0fTH_NtflArz27SqvgW0ftqJ-mvlvtsPUDwBWLgEgItsl2aTobzUTqbLsb_bF4BkkGj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Infant dangerous action detection and identification method based on pose estimation and improved YOLOXtiny</title><source>esp@cenet</source><creator>ZHU ZEDE ; WANG QISHENG</creator><creatorcontrib>ZHU ZEDE ; WANG QISHENG</creatorcontrib><description>The invention discloses an infant dangerous action detection and identification method based on pose estimation and improved YOLOXtiny, and the method comprises the steps: obtaining a video frame from a camera, and carrying out the preprocessing of the input video frame; secondly, inputting the preprocessed video frames into a position and attitude estimation algorithm and a YOLOXtiny target detection algorithm improved based on model pruning and a fusion space attention mechanism so as to obtain the number of skeleton points, interested target areas and category detection result data in each frame of picture; wherein the target detection algorithm is obtained by using a self-built data set and training in a transfer learning mode; then, the obtained data are processed and fused, so that the accurate recognition capability of different dangerous actions is improved; and finally, designing rules by utilizing the processed and fused data to judge normal and dangerous action states of the infant and give an alar</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230509&amp;DB=EPODOC&amp;CC=CN&amp;NR=116092187A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230509&amp;DB=EPODOC&amp;CC=CN&amp;NR=116092187A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHU ZEDE</creatorcontrib><creatorcontrib>WANG QISHENG</creatorcontrib><title>Infant dangerous action detection and identification method based on pose estimation and improved YOLOXtiny</title><description>The invention discloses an infant dangerous action detection and identification method based on pose estimation and improved YOLOXtiny, and the method comprises the steps: obtaining a video frame from a camera, and carrying out the preprocessing of the input video frame; secondly, inputting the preprocessed video frames into a position and attitude estimation algorithm and a YOLOXtiny target detection algorithm improved based on model pruning and a fusion space attention mechanism so as to obtain the number of skeleton points, interested target areas and category detection result data in each frame of picture; wherein the target detection algorithm is obtained by using a self-built data set and training in a transfer learning mode; then, the obtained data are processed and fused, so that the accurate recognition capability of different dangerous actions is improved; and finally, designing rules by utilizing the processed and fused data to judge normal and dangerous action states of the infant and give an alar</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi70KwkAQhNNYiPoO6wMIRsGfUoKiIKax0CqsuYkeentHbhV8e4MKtlYz881MO7lupGJRMixn1P4eiUu1XshA8XEshqyBqK1syW_koBdv6MQRhpocfAQhqnX8u7hQ-0fTH_NtflArz27SqvgW0ftqJ-mvlvtsPUDwBWLgEgItsl2aTobzUTqbLsb_bF4BkkGj</recordid><startdate>20230509</startdate><enddate>20230509</enddate><creator>ZHU ZEDE</creator><creator>WANG QISHENG</creator><scope>EVB</scope></search><sort><creationdate>20230509</creationdate><title>Infant dangerous action detection and identification method based on pose estimation and improved YOLOXtiny</title><author>ZHU ZEDE ; WANG QISHENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116092187A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHU ZEDE</creatorcontrib><creatorcontrib>WANG QISHENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHU ZEDE</au><au>WANG QISHENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Infant dangerous action detection and identification method based on pose estimation and improved YOLOXtiny</title><date>2023-05-09</date><risdate>2023</risdate><abstract>The invention discloses an infant dangerous action detection and identification method based on pose estimation and improved YOLOXtiny, and the method comprises the steps: obtaining a video frame from a camera, and carrying out the preprocessing of the input video frame; secondly, inputting the preprocessed video frames into a position and attitude estimation algorithm and a YOLOXtiny target detection algorithm improved based on model pruning and a fusion space attention mechanism so as to obtain the number of skeleton points, interested target areas and category detection result data in each frame of picture; wherein the target detection algorithm is obtained by using a self-built data set and training in a transfer learning mode; then, the obtained data are processed and fused, so that the accurate recognition capability of different dangerous actions is improved; and finally, designing rules by utilizing the processed and fused data to judge normal and dangerous action states of the infant and give an alar</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116092187A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Infant dangerous action detection and identification method based on pose estimation and improved YOLOXtiny
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T05%3A58%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHU%20ZEDE&rft.date=2023-05-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116092187A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true