Sensor optimization

The present disclosure provides "sensor optimization". A three-dimensional mesh model of the traffic scene may be determined based on the mesh elements. Weights of grid elements of the three-dimensional grid model that correspond to the priority regions and the occluded grid elements may b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: JANISZEWSKI STANISLAW, KOUROUS-HARRIGAN HELEN E, BROOKS CHRISTOPHER, BULLER WILLIAM T, GRAHAM JOHN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator JANISZEWSKI STANISLAW
KOUROUS-HARRIGAN HELEN E
BROOKS CHRISTOPHER
BULLER WILLIAM T
GRAHAM JOHN
description The present disclosure provides "sensor optimization". A three-dimensional mesh model of the traffic scene may be determined based on the mesh elements. Weights of grid elements of the three-dimensional grid model that correspond to the priority regions and the occluded grid elements may be determined. A mesh coverage for a respective fixed sensor may be determined based on mesh elements of the three-dimensional mesh model. A matrix is determined based on a grid coverage of the plurality of fixed sensors. An optimal subset of fixed sensors may be determined based on applying a greedy search algorithm to the matrix, weights, and costs corresponding to the plurality of fixed sensors to maximize a grid coverage to cost ratio based on the poses of the plurality of fixed sensors. 本公开提供"传感器优化"。可以基于网格元素来确定交通场景的三维网格模型。可以确定三维网格模型的与优先级区域和被遮挡的网格元素相对应的网格元素的权重。可以基于三维网格模型的网格元素来确定相应的固定传感器的网格覆盖范围。基于多个固定传感器的网格覆盖范围来确定矩阵。可以基于将贪婪搜索算法应用于矩阵、权重和对应于多个固定传感器的成本以基于多个固定传感器的姿态来使网格覆盖范围与成本的比率最大化来确定固定传感器的最佳子集。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116070341A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116070341A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116070341A3</originalsourceid><addsrcrecordid>eNrjZBAOTs0rzi9SyC8oyczNrEosyczP42FgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8c5-hoZmBuYGxiaGjsbEqAEAQ_kgqQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Sensor optimization</title><source>esp@cenet</source><creator>JANISZEWSKI STANISLAW ; KOUROUS-HARRIGAN HELEN E ; BROOKS CHRISTOPHER ; BULLER WILLIAM T ; GRAHAM JOHN</creator><creatorcontrib>JANISZEWSKI STANISLAW ; KOUROUS-HARRIGAN HELEN E ; BROOKS CHRISTOPHER ; BULLER WILLIAM T ; GRAHAM JOHN</creatorcontrib><description>The present disclosure provides "sensor optimization". A three-dimensional mesh model of the traffic scene may be determined based on the mesh elements. Weights of grid elements of the three-dimensional grid model that correspond to the priority regions and the occluded grid elements may be determined. A mesh coverage for a respective fixed sensor may be determined based on mesh elements of the three-dimensional mesh model. A matrix is determined based on a grid coverage of the plurality of fixed sensors. An optimal subset of fixed sensors may be determined based on applying a greedy search algorithm to the matrix, weights, and costs corresponding to the plurality of fixed sensors to maximize a grid coverage to cost ratio based on the poses of the plurality of fixed sensors. 本公开提供"传感器优化"。可以基于网格元素来确定交通场景的三维网格模型。可以确定三维网格模型的与优先级区域和被遮挡的网格元素相对应的网格元素的权重。可以基于三维网格模型的网格元素来确定相应的固定传感器的网格覆盖范围。基于多个固定传感器的网格覆盖范围来确定矩阵。可以基于将贪婪搜索算法应用于矩阵、权重和对应于多个固定传感器的成本以基于多个固定传感器的姿态来使网格覆盖范围与成本的比率最大化来确定固定传感器的最佳子集。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230505&amp;DB=EPODOC&amp;CC=CN&amp;NR=116070341A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25551,76302</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230505&amp;DB=EPODOC&amp;CC=CN&amp;NR=116070341A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>JANISZEWSKI STANISLAW</creatorcontrib><creatorcontrib>KOUROUS-HARRIGAN HELEN E</creatorcontrib><creatorcontrib>BROOKS CHRISTOPHER</creatorcontrib><creatorcontrib>BULLER WILLIAM T</creatorcontrib><creatorcontrib>GRAHAM JOHN</creatorcontrib><title>Sensor optimization</title><description>The present disclosure provides "sensor optimization". A three-dimensional mesh model of the traffic scene may be determined based on the mesh elements. Weights of grid elements of the three-dimensional grid model that correspond to the priority regions and the occluded grid elements may be determined. A mesh coverage for a respective fixed sensor may be determined based on mesh elements of the three-dimensional mesh model. A matrix is determined based on a grid coverage of the plurality of fixed sensors. An optimal subset of fixed sensors may be determined based on applying a greedy search algorithm to the matrix, weights, and costs corresponding to the plurality of fixed sensors to maximize a grid coverage to cost ratio based on the poses of the plurality of fixed sensors. 本公开提供"传感器优化"。可以基于网格元素来确定交通场景的三维网格模型。可以确定三维网格模型的与优先级区域和被遮挡的网格元素相对应的网格元素的权重。可以基于三维网格模型的网格元素来确定相应的固定传感器的网格覆盖范围。基于多个固定传感器的网格覆盖范围来确定矩阵。可以基于将贪婪搜索算法应用于矩阵、权重和对应于多个固定传感器的成本以基于多个固定传感器的姿态来使网格覆盖范围与成本的比率最大化来确定固定传感器的最佳子集。</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZBAOTs0rzi9SyC8oyczNrEosyczP42FgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8c5-hoZmBuYGxiaGjsbEqAEAQ_kgqQ</recordid><startdate>20230505</startdate><enddate>20230505</enddate><creator>JANISZEWSKI STANISLAW</creator><creator>KOUROUS-HARRIGAN HELEN E</creator><creator>BROOKS CHRISTOPHER</creator><creator>BULLER WILLIAM T</creator><creator>GRAHAM JOHN</creator><scope>EVB</scope></search><sort><creationdate>20230505</creationdate><title>Sensor optimization</title><author>JANISZEWSKI STANISLAW ; KOUROUS-HARRIGAN HELEN E ; BROOKS CHRISTOPHER ; BULLER WILLIAM T ; GRAHAM JOHN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116070341A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>JANISZEWSKI STANISLAW</creatorcontrib><creatorcontrib>KOUROUS-HARRIGAN HELEN E</creatorcontrib><creatorcontrib>BROOKS CHRISTOPHER</creatorcontrib><creatorcontrib>BULLER WILLIAM T</creatorcontrib><creatorcontrib>GRAHAM JOHN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>JANISZEWSKI STANISLAW</au><au>KOUROUS-HARRIGAN HELEN E</au><au>BROOKS CHRISTOPHER</au><au>BULLER WILLIAM T</au><au>GRAHAM JOHN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Sensor optimization</title><date>2023-05-05</date><risdate>2023</risdate><abstract>The present disclosure provides "sensor optimization". A three-dimensional mesh model of the traffic scene may be determined based on the mesh elements. Weights of grid elements of the three-dimensional grid model that correspond to the priority regions and the occluded grid elements may be determined. A mesh coverage for a respective fixed sensor may be determined based on mesh elements of the three-dimensional mesh model. A matrix is determined based on a grid coverage of the plurality of fixed sensors. An optimal subset of fixed sensors may be determined based on applying a greedy search algorithm to the matrix, weights, and costs corresponding to the plurality of fixed sensors to maximize a grid coverage to cost ratio based on the poses of the plurality of fixed sensors. 本公开提供"传感器优化"。可以基于网格元素来确定交通场景的三维网格模型。可以确定三维网格模型的与优先级区域和被遮挡的网格元素相对应的网格元素的权重。可以基于三维网格模型的网格元素来确定相应的固定传感器的网格覆盖范围。基于多个固定传感器的网格覆盖范围来确定矩阵。可以基于将贪婪搜索算法应用于矩阵、权重和对应于多个固定传感器的成本以基于多个固定传感器的姿态来使网格覆盖范围与成本的比率最大化来确定固定传感器的最佳子集。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116070341A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Sensor optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=JANISZEWSKI%20STANISLAW&rft.date=2023-05-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116070341A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true