Link prediction method for heterogeneous dynamic network

The invention discloses a link prediction method for a heterogeneous dynamic network, and the method comprises the following steps: S1, generating a time sequence sub-graph, determining a node type and an edge type which are used for constructing the time sequence sub-graph in a heterogeneous data s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG YUNCHONG, JIANG XUEYONG, DONG QIAN, WANG BINGYUAN, LIU BAISONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG YUNCHONG
JIANG XUEYONG
DONG QIAN
WANG BINGYUAN
LIU BAISONG
description The invention discloses a link prediction method for a heterogeneous dynamic network, and the method comprises the following steps: S1, generating a time sequence sub-graph, determining a node type and an edge type which are used for constructing the time sequence sub-graph in a heterogeneous data set, selecting a timestamp, and determining the structure of the time sequence sub-graph at each moment; s2, network embedding learning is carried out, historical interaction information of nodes and structure information of the time sequence sub-graphs are fused, and vector representation of each time sequence sub-graph is obtained; s3, link prediction: processing graph data by adopting an LSTM network, taking the vector representation of the time sequence sub-graph as the input of the LSTM, capturing time sequence information, and calculating the similarity of node pairs according to an output hidden state vector so as to measure the probability of interaction of the node pairs; and S4, model optimization: a link
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116055342A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116055342A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116055342A3</originalsourceid><addsrcrecordid>eNrjZLDwyczLVigoSk3JTC7JzM9TyE0tychPUUjLL1LISC1JLcpPT81LzS8tVkipzEvMzUxWyEstKc8vyuZhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJQH0l8c5-hoZmBqamxiZGjsbEqAEAP0suyA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Link prediction method for heterogeneous dynamic network</title><source>esp@cenet</source><creator>ZHANG YUNCHONG ; JIANG XUEYONG ; DONG QIAN ; WANG BINGYUAN ; LIU BAISONG</creator><creatorcontrib>ZHANG YUNCHONG ; JIANG XUEYONG ; DONG QIAN ; WANG BINGYUAN ; LIU BAISONG</creatorcontrib><description>The invention discloses a link prediction method for a heterogeneous dynamic network, and the method comprises the following steps: S1, generating a time sequence sub-graph, determining a node type and an edge type which are used for constructing the time sequence sub-graph in a heterogeneous data set, selecting a timestamp, and determining the structure of the time sequence sub-graph at each moment; s2, network embedding learning is carried out, historical interaction information of nodes and structure information of the time sequence sub-graphs are fused, and vector representation of each time sequence sub-graph is obtained; s3, link prediction: processing graph data by adopting an LSTM network, taking the vector representation of the time sequence sub-graph as the input of the LSTM, capturing time sequence information, and calculating the similarity of node pairs according to an output hidden state vector so as to measure the probability of interaction of the node pairs; and S4, model optimization: a link</description><language>chi ; eng</language><subject>ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230502&amp;DB=EPODOC&amp;CC=CN&amp;NR=116055342A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230502&amp;DB=EPODOC&amp;CC=CN&amp;NR=116055342A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG YUNCHONG</creatorcontrib><creatorcontrib>JIANG XUEYONG</creatorcontrib><creatorcontrib>DONG QIAN</creatorcontrib><creatorcontrib>WANG BINGYUAN</creatorcontrib><creatorcontrib>LIU BAISONG</creatorcontrib><title>Link prediction method for heterogeneous dynamic network</title><description>The invention discloses a link prediction method for a heterogeneous dynamic network, and the method comprises the following steps: S1, generating a time sequence sub-graph, determining a node type and an edge type which are used for constructing the time sequence sub-graph in a heterogeneous data set, selecting a timestamp, and determining the structure of the time sequence sub-graph at each moment; s2, network embedding learning is carried out, historical interaction information of nodes and structure information of the time sequence sub-graphs are fused, and vector representation of each time sequence sub-graph is obtained; s3, link prediction: processing graph data by adopting an LSTM network, taking the vector representation of the time sequence sub-graph as the input of the LSTM, capturing time sequence information, and calculating the similarity of node pairs according to an output hidden state vector so as to measure the probability of interaction of the node pairs; and S4, model optimization: a link</description><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLDwyczLVigoSk3JTC7JzM9TyE0tychPUUjLL1LISC1JLcpPT81LzS8tVkipzEvMzUxWyEstKc8vyuZhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJQH0l8c5-hoZmBqamxiZGjsbEqAEAP0suyA</recordid><startdate>20230502</startdate><enddate>20230502</enddate><creator>ZHANG YUNCHONG</creator><creator>JIANG XUEYONG</creator><creator>DONG QIAN</creator><creator>WANG BINGYUAN</creator><creator>LIU BAISONG</creator><scope>EVB</scope></search><sort><creationdate>20230502</creationdate><title>Link prediction method for heterogeneous dynamic network</title><author>ZHANG YUNCHONG ; JIANG XUEYONG ; DONG QIAN ; WANG BINGYUAN ; LIU BAISONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116055342A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG YUNCHONG</creatorcontrib><creatorcontrib>JIANG XUEYONG</creatorcontrib><creatorcontrib>DONG QIAN</creatorcontrib><creatorcontrib>WANG BINGYUAN</creatorcontrib><creatorcontrib>LIU BAISONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG YUNCHONG</au><au>JIANG XUEYONG</au><au>DONG QIAN</au><au>WANG BINGYUAN</au><au>LIU BAISONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Link prediction method for heterogeneous dynamic network</title><date>2023-05-02</date><risdate>2023</risdate><abstract>The invention discloses a link prediction method for a heterogeneous dynamic network, and the method comprises the following steps: S1, generating a time sequence sub-graph, determining a node type and an edge type which are used for constructing the time sequence sub-graph in a heterogeneous data set, selecting a timestamp, and determining the structure of the time sequence sub-graph at each moment; s2, network embedding learning is carried out, historical interaction information of nodes and structure information of the time sequence sub-graphs are fused, and vector representation of each time sequence sub-graph is obtained; s3, link prediction: processing graph data by adopting an LSTM network, taking the vector representation of the time sequence sub-graph as the input of the LSTM, capturing time sequence information, and calculating the similarity of node pairs according to an output hidden state vector so as to measure the probability of interaction of the node pairs; and S4, model optimization: a link</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116055342A
source esp@cenet
subjects ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Link prediction method for heterogeneous dynamic network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A47%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20YUNCHONG&rft.date=2023-05-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116055342A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true