Traffic sign detection method and device based on multi-feature fusion and storage medium

The invention discloses a traffic sign detection method and device based on multi-feature fusion, and a storage medium. The method comprises the steps of obtaining a to-be-detected image of a traffic sign; performing color feature extraction and shape feature extraction on the to-be-detected image t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHEN DEHUA, CHEN XIN, DONG XINCI, HUANG LI, SHU XUANCAI, OU YUANXI, XU QINMEI, XU HAOYI, DENG CHEN, LIU YUN, RAN GUANGWEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CHEN DEHUA
CHEN XIN
DONG XINCI
HUANG LI
SHU XUANCAI
OU YUANXI
XU QINMEI
XU HAOYI
DENG CHEN
LIU YUN
RAN GUANGWEI
description The invention discloses a traffic sign detection method and device based on multi-feature fusion, and a storage medium. The method comprises the steps of obtaining a to-be-detected image of a traffic sign; performing color feature extraction and shape feature extraction on the to-be-detected image to obtain a first detection image based on color features and shape features; inputting the first detection image into a preset depth feature extraction model to obtain a depth feature-based second detection image output by the depth feature extraction model; wherein the depth feature extraction model is an improved convolutional neural network model LeNet-5; and inputting the first detection image and the second detection image into a preset traffic sign detection model to obtain a traffic sign detection result output by the traffic sign detection model. According to the invention, the most important color features and shape features in the traffic sign image and the depth features extracted through the neural netw
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116052129A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116052129A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116052129A3</originalsourceid><addsrcrecordid>eNqNy0EKwjAUBNBsXIh6h-8BCrai4FKK4spVN67KN5m0gTYpzY_ntwEP4Gpg5s1avZqZrXWaous8GQi0uOBphPTBEHuzlB-nQW-OMJSnNIgrLFjSDLIpZp9hlDBzh-VrXBq3amV5iNj9cqP291tTPwpMoUWcWMND2vpZlufDqSqry_X4j_kCvdg6Zg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Traffic sign detection method and device based on multi-feature fusion and storage medium</title><source>esp@cenet</source><creator>CHEN DEHUA ; CHEN XIN ; DONG XINCI ; HUANG LI ; SHU XUANCAI ; OU YUANXI ; XU QINMEI ; XU HAOYI ; DENG CHEN ; LIU YUN ; RAN GUANGWEI</creator><creatorcontrib>CHEN DEHUA ; CHEN XIN ; DONG XINCI ; HUANG LI ; SHU XUANCAI ; OU YUANXI ; XU QINMEI ; XU HAOYI ; DENG CHEN ; LIU YUN ; RAN GUANGWEI</creatorcontrib><description>The invention discloses a traffic sign detection method and device based on multi-feature fusion, and a storage medium. The method comprises the steps of obtaining a to-be-detected image of a traffic sign; performing color feature extraction and shape feature extraction on the to-be-detected image to obtain a first detection image based on color features and shape features; inputting the first detection image into a preset depth feature extraction model to obtain a depth feature-based second detection image output by the depth feature extraction model; wherein the depth feature extraction model is an improved convolutional neural network model LeNet-5; and inputting the first detection image and the second detection image into a preset traffic sign detection model to obtain a traffic sign detection result output by the traffic sign detection model. According to the invention, the most important color features and shape features in the traffic sign image and the depth features extracted through the neural netw</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230502&amp;DB=EPODOC&amp;CC=CN&amp;NR=116052129A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,782,887,25571,76555</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230502&amp;DB=EPODOC&amp;CC=CN&amp;NR=116052129A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN DEHUA</creatorcontrib><creatorcontrib>CHEN XIN</creatorcontrib><creatorcontrib>DONG XINCI</creatorcontrib><creatorcontrib>HUANG LI</creatorcontrib><creatorcontrib>SHU XUANCAI</creatorcontrib><creatorcontrib>OU YUANXI</creatorcontrib><creatorcontrib>XU QINMEI</creatorcontrib><creatorcontrib>XU HAOYI</creatorcontrib><creatorcontrib>DENG CHEN</creatorcontrib><creatorcontrib>LIU YUN</creatorcontrib><creatorcontrib>RAN GUANGWEI</creatorcontrib><title>Traffic sign detection method and device based on multi-feature fusion and storage medium</title><description>The invention discloses a traffic sign detection method and device based on multi-feature fusion, and a storage medium. The method comprises the steps of obtaining a to-be-detected image of a traffic sign; performing color feature extraction and shape feature extraction on the to-be-detected image to obtain a first detection image based on color features and shape features; inputting the first detection image into a preset depth feature extraction model to obtain a depth feature-based second detection image output by the depth feature extraction model; wherein the depth feature extraction model is an improved convolutional neural network model LeNet-5; and inputting the first detection image and the second detection image into a preset traffic sign detection model to obtain a traffic sign detection result output by the traffic sign detection model. According to the invention, the most important color features and shape features in the traffic sign image and the depth features extracted through the neural netw</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy0EKwjAUBNBsXIh6h-8BCrai4FKK4spVN67KN5m0gTYpzY_ntwEP4Gpg5s1avZqZrXWaous8GQi0uOBphPTBEHuzlB-nQW-OMJSnNIgrLFjSDLIpZp9hlDBzh-VrXBq3amV5iNj9cqP291tTPwpMoUWcWMND2vpZlufDqSqry_X4j_kCvdg6Zg</recordid><startdate>20230502</startdate><enddate>20230502</enddate><creator>CHEN DEHUA</creator><creator>CHEN XIN</creator><creator>DONG XINCI</creator><creator>HUANG LI</creator><creator>SHU XUANCAI</creator><creator>OU YUANXI</creator><creator>XU QINMEI</creator><creator>XU HAOYI</creator><creator>DENG CHEN</creator><creator>LIU YUN</creator><creator>RAN GUANGWEI</creator><scope>EVB</scope></search><sort><creationdate>20230502</creationdate><title>Traffic sign detection method and device based on multi-feature fusion and storage medium</title><author>CHEN DEHUA ; CHEN XIN ; DONG XINCI ; HUANG LI ; SHU XUANCAI ; OU YUANXI ; XU QINMEI ; XU HAOYI ; DENG CHEN ; LIU YUN ; RAN GUANGWEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116052129A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN DEHUA</creatorcontrib><creatorcontrib>CHEN XIN</creatorcontrib><creatorcontrib>DONG XINCI</creatorcontrib><creatorcontrib>HUANG LI</creatorcontrib><creatorcontrib>SHU XUANCAI</creatorcontrib><creatorcontrib>OU YUANXI</creatorcontrib><creatorcontrib>XU QINMEI</creatorcontrib><creatorcontrib>XU HAOYI</creatorcontrib><creatorcontrib>DENG CHEN</creatorcontrib><creatorcontrib>LIU YUN</creatorcontrib><creatorcontrib>RAN GUANGWEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN DEHUA</au><au>CHEN XIN</au><au>DONG XINCI</au><au>HUANG LI</au><au>SHU XUANCAI</au><au>OU YUANXI</au><au>XU QINMEI</au><au>XU HAOYI</au><au>DENG CHEN</au><au>LIU YUN</au><au>RAN GUANGWEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Traffic sign detection method and device based on multi-feature fusion and storage medium</title><date>2023-05-02</date><risdate>2023</risdate><abstract>The invention discloses a traffic sign detection method and device based on multi-feature fusion, and a storage medium. The method comprises the steps of obtaining a to-be-detected image of a traffic sign; performing color feature extraction and shape feature extraction on the to-be-detected image to obtain a first detection image based on color features and shape features; inputting the first detection image into a preset depth feature extraction model to obtain a depth feature-based second detection image output by the depth feature extraction model; wherein the depth feature extraction model is an improved convolutional neural network model LeNet-5; and inputting the first detection image and the second detection image into a preset traffic sign detection model to obtain a traffic sign detection result output by the traffic sign detection model. According to the invention, the most important color features and shape features in the traffic sign image and the depth features extracted through the neural netw</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116052129A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Traffic sign detection method and device based on multi-feature fusion and storage medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T14%3A32%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20DEHUA&rft.date=2023-05-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116052129A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true