Power line inspection method based on lightweight target recognition neural network model

The invention provides a power line inspection method based on a lightweight target recognition neural network model, and the method comprises the steps: 1, carrying out the inspection of a power grid transmission line through an unmanned plane, and obtaining a power grid line image through the unma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SUN WENWEN, CHEN JIANBO, WANG QIAN, TANG RUI, ZHANG SAIFEI, ZOU DEFAN, ZHANG NAN, YAO PING, HE YUCHEN, LIAO LIN, GONG QIBO, YANG CHUNPING, LUO HUI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SUN WENWEN
CHEN JIANBO
WANG QIAN
TANG RUI
ZHANG SAIFEI
ZOU DEFAN
ZHANG NAN
YAO PING
HE YUCHEN
LIAO LIN
GONG QIBO
YANG CHUNPING
LUO HUI
description The invention provides a power line inspection method based on a lightweight target recognition neural network model, and the method comprises the steps: 1, carrying out the inspection of a power grid transmission line through an unmanned plane, and obtaining a power grid line image through the unmanned plane; 2, constructing a lightweight target recognition neural network model, and inputting the image into the lightweight target recognition neural network model for recognition; and step 3, obtaining a recognition result of the power grid line image according to the output of the lightweight target recognition neural network model, wherein the recognition result comprises the category and the fault position of the power grid line. According to the method, embedded hardware computing power is considered, neural network parameters with high density are randomly discarded by combining a Bernoulli equation of the hardware computing power based on a deep separation convolutional network, and meanwhile, the recogn
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116052024A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116052024A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116052024A3</originalsourceid><addsrcrecordid>eNqNyr0KwjAYheEsDqLew-cFCG392aUoTuLg4lRiekyDab6QRHL7RvECXM7LgWcqbhfOCGSNAxkXPVQy7GhEGrinu4zoqXxr9JAyPktJBo1EAYq1M1_u8ArSlqTM4Ukj97BzMXlIG7H4dSaWx8O1Pa3guUP0UqH4rj3X9a7aNlWz2a__MW8xzjtC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Power line inspection method based on lightweight target recognition neural network model</title><source>esp@cenet</source><creator>SUN WENWEN ; CHEN JIANBO ; WANG QIAN ; TANG RUI ; ZHANG SAIFEI ; ZOU DEFAN ; ZHANG NAN ; YAO PING ; HE YUCHEN ; LIAO LIN ; GONG QIBO ; YANG CHUNPING ; LUO HUI</creator><creatorcontrib>SUN WENWEN ; CHEN JIANBO ; WANG QIAN ; TANG RUI ; ZHANG SAIFEI ; ZOU DEFAN ; ZHANG NAN ; YAO PING ; HE YUCHEN ; LIAO LIN ; GONG QIBO ; YANG CHUNPING ; LUO HUI</creatorcontrib><description>The invention provides a power line inspection method based on a lightweight target recognition neural network model, and the method comprises the steps: 1, carrying out the inspection of a power grid transmission line through an unmanned plane, and obtaining a power grid line image through the unmanned plane; 2, constructing a lightweight target recognition neural network model, and inputting the image into the lightweight target recognition neural network model for recognition; and step 3, obtaining a recognition result of the power grid line image according to the output of the lightweight target recognition neural network model, wherein the recognition result comprises the category and the fault position of the power grid line. According to the method, embedded hardware computing power is considered, neural network parameters with high density are randomly discarded by combining a Bernoulli equation of the hardware computing power based on a deep separation convolutional network, and meanwhile, the recogn</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230502&amp;DB=EPODOC&amp;CC=CN&amp;NR=116052024A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230502&amp;DB=EPODOC&amp;CC=CN&amp;NR=116052024A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SUN WENWEN</creatorcontrib><creatorcontrib>CHEN JIANBO</creatorcontrib><creatorcontrib>WANG QIAN</creatorcontrib><creatorcontrib>TANG RUI</creatorcontrib><creatorcontrib>ZHANG SAIFEI</creatorcontrib><creatorcontrib>ZOU DEFAN</creatorcontrib><creatorcontrib>ZHANG NAN</creatorcontrib><creatorcontrib>YAO PING</creatorcontrib><creatorcontrib>HE YUCHEN</creatorcontrib><creatorcontrib>LIAO LIN</creatorcontrib><creatorcontrib>GONG QIBO</creatorcontrib><creatorcontrib>YANG CHUNPING</creatorcontrib><creatorcontrib>LUO HUI</creatorcontrib><title>Power line inspection method based on lightweight target recognition neural network model</title><description>The invention provides a power line inspection method based on a lightweight target recognition neural network model, and the method comprises the steps: 1, carrying out the inspection of a power grid transmission line through an unmanned plane, and obtaining a power grid line image through the unmanned plane; 2, constructing a lightweight target recognition neural network model, and inputting the image into the lightweight target recognition neural network model for recognition; and step 3, obtaining a recognition result of the power grid line image according to the output of the lightweight target recognition neural network model, wherein the recognition result comprises the category and the fault position of the power grid line. According to the method, embedded hardware computing power is considered, neural network parameters with high density are randomly discarded by combining a Bernoulli equation of the hardware computing power based on a deep separation convolutional network, and meanwhile, the recogn</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyr0KwjAYheEsDqLew-cFCG392aUoTuLg4lRiekyDab6QRHL7RvECXM7LgWcqbhfOCGSNAxkXPVQy7GhEGrinu4zoqXxr9JAyPktJBo1EAYq1M1_u8ArSlqTM4Ukj97BzMXlIG7H4dSaWx8O1Pa3guUP0UqH4rj3X9a7aNlWz2a__MW8xzjtC</recordid><startdate>20230502</startdate><enddate>20230502</enddate><creator>SUN WENWEN</creator><creator>CHEN JIANBO</creator><creator>WANG QIAN</creator><creator>TANG RUI</creator><creator>ZHANG SAIFEI</creator><creator>ZOU DEFAN</creator><creator>ZHANG NAN</creator><creator>YAO PING</creator><creator>HE YUCHEN</creator><creator>LIAO LIN</creator><creator>GONG QIBO</creator><creator>YANG CHUNPING</creator><creator>LUO HUI</creator><scope>EVB</scope></search><sort><creationdate>20230502</creationdate><title>Power line inspection method based on lightweight target recognition neural network model</title><author>SUN WENWEN ; CHEN JIANBO ; WANG QIAN ; TANG RUI ; ZHANG SAIFEI ; ZOU DEFAN ; ZHANG NAN ; YAO PING ; HE YUCHEN ; LIAO LIN ; GONG QIBO ; YANG CHUNPING ; LUO HUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116052024A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SUN WENWEN</creatorcontrib><creatorcontrib>CHEN JIANBO</creatorcontrib><creatorcontrib>WANG QIAN</creatorcontrib><creatorcontrib>TANG RUI</creatorcontrib><creatorcontrib>ZHANG SAIFEI</creatorcontrib><creatorcontrib>ZOU DEFAN</creatorcontrib><creatorcontrib>ZHANG NAN</creatorcontrib><creatorcontrib>YAO PING</creatorcontrib><creatorcontrib>HE YUCHEN</creatorcontrib><creatorcontrib>LIAO LIN</creatorcontrib><creatorcontrib>GONG QIBO</creatorcontrib><creatorcontrib>YANG CHUNPING</creatorcontrib><creatorcontrib>LUO HUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SUN WENWEN</au><au>CHEN JIANBO</au><au>WANG QIAN</au><au>TANG RUI</au><au>ZHANG SAIFEI</au><au>ZOU DEFAN</au><au>ZHANG NAN</au><au>YAO PING</au><au>HE YUCHEN</au><au>LIAO LIN</au><au>GONG QIBO</au><au>YANG CHUNPING</au><au>LUO HUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Power line inspection method based on lightweight target recognition neural network model</title><date>2023-05-02</date><risdate>2023</risdate><abstract>The invention provides a power line inspection method based on a lightweight target recognition neural network model, and the method comprises the steps: 1, carrying out the inspection of a power grid transmission line through an unmanned plane, and obtaining a power grid line image through the unmanned plane; 2, constructing a lightweight target recognition neural network model, and inputting the image into the lightweight target recognition neural network model for recognition; and step 3, obtaining a recognition result of the power grid line image according to the output of the lightweight target recognition neural network model, wherein the recognition result comprises the category and the fault position of the power grid line. According to the method, embedded hardware computing power is considered, neural network parameters with high density are randomly discarded by combining a Bernoulli equation of the hardware computing power based on a deep separation convolutional network, and meanwhile, the recogn</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116052024A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Power line inspection method based on lightweight target recognition neural network model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A21%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SUN%20WENWEN&rft.date=2023-05-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116052024A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true