Escalator monitoring video anomaly detection method and system
The invention discloses an escalator monitoring video anomaly detection method and system, and relates to the field of escalator detection, and the method comprises the steps: obtaining a key point heat map corresponding to each frame of picture in a data set through a combined trained YOLOv5 target...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | TONG QINFENG ZHUO RONGRONG JIANG JUNTAO ZHONG YI YANG JIANDANG LIU YONG |
description | The invention discloses an escalator monitoring video anomaly detection method and system, and relates to the field of escalator detection, and the method comprises the steps: obtaining a key point heat map corresponding to each frame of picture in a data set through a combined trained YOLOv5 target detection model and an HR-Net key point extraction model, and obtaining a key point inter-frame change map corresponding to the key point heat map; a convolutional neural network model is obtained by training a convolutional neural network through an image label pair including a key point inter-frame change graph and a corresponding label, and when detection is started, a to-be-detected escalator monitoring video picture set is input into a YOLOv5 target detection model frame by frame to obtain a pedestrian target frame position corresponding to each frame of picture. According to the method, pedestrian target frame positions are obtained, key point heat maps corresponding to the pedestrian target frame positions |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116030412A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116030412A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116030412A3</originalsourceid><addsrcrecordid>eNrjZLBzLU5OzEksyS9SyM3PywTSmXnpCmWZKan5Col5-bmJOZUKKaklqcklmfl5CrmpJRn5KUCJFIXiyuKS1FweBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnJqXWhLv7GdoaGZgbGBiaORoTIwaAJR_MO0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Escalator monitoring video anomaly detection method and system</title><source>esp@cenet</source><creator>TONG QINFENG ; ZHUO RONGRONG ; JIANG JUNTAO ; ZHONG YI ; YANG JIANDANG ; LIU YONG</creator><creatorcontrib>TONG QINFENG ; ZHUO RONGRONG ; JIANG JUNTAO ; ZHONG YI ; YANG JIANDANG ; LIU YONG</creatorcontrib><description>The invention discloses an escalator monitoring video anomaly detection method and system, and relates to the field of escalator detection, and the method comprises the steps: obtaining a key point heat map corresponding to each frame of picture in a data set through a combined trained YOLOv5 target detection model and an HR-Net key point extraction model, and obtaining a key point inter-frame change map corresponding to the key point heat map; a convolutional neural network model is obtained by training a convolutional neural network through an image label pair including a key point inter-frame change graph and a corresponding label, and when detection is started, a to-be-detected escalator monitoring video picture set is input into a YOLOv5 target detection model frame by frame to obtain a pedestrian target frame position corresponding to each frame of picture. According to the method, pedestrian target frame positions are obtained, key point heat maps corresponding to the pedestrian target frame positions</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230428&DB=EPODOC&CC=CN&NR=116030412A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25566,76549</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230428&DB=EPODOC&CC=CN&NR=116030412A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>TONG QINFENG</creatorcontrib><creatorcontrib>ZHUO RONGRONG</creatorcontrib><creatorcontrib>JIANG JUNTAO</creatorcontrib><creatorcontrib>ZHONG YI</creatorcontrib><creatorcontrib>YANG JIANDANG</creatorcontrib><creatorcontrib>LIU YONG</creatorcontrib><title>Escalator monitoring video anomaly detection method and system</title><description>The invention discloses an escalator monitoring video anomaly detection method and system, and relates to the field of escalator detection, and the method comprises the steps: obtaining a key point heat map corresponding to each frame of picture in a data set through a combined trained YOLOv5 target detection model and an HR-Net key point extraction model, and obtaining a key point inter-frame change map corresponding to the key point heat map; a convolutional neural network model is obtained by training a convolutional neural network through an image label pair including a key point inter-frame change graph and a corresponding label, and when detection is started, a to-be-detected escalator monitoring video picture set is input into a YOLOv5 target detection model frame by frame to obtain a pedestrian target frame position corresponding to each frame of picture. According to the method, pedestrian target frame positions are obtained, key point heat maps corresponding to the pedestrian target frame positions</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLBzLU5OzEksyS9SyM3PywTSmXnpCmWZKan5Col5-bmJOZUKKaklqcklmfl5CrmpJRn5KUCJFIXiyuKS1FweBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnJqXWhLv7GdoaGZgbGBiaORoTIwaAJR_MO0</recordid><startdate>20230428</startdate><enddate>20230428</enddate><creator>TONG QINFENG</creator><creator>ZHUO RONGRONG</creator><creator>JIANG JUNTAO</creator><creator>ZHONG YI</creator><creator>YANG JIANDANG</creator><creator>LIU YONG</creator><scope>EVB</scope></search><sort><creationdate>20230428</creationdate><title>Escalator monitoring video anomaly detection method and system</title><author>TONG QINFENG ; ZHUO RONGRONG ; JIANG JUNTAO ; ZHONG YI ; YANG JIANDANG ; LIU YONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116030412A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>TONG QINFENG</creatorcontrib><creatorcontrib>ZHUO RONGRONG</creatorcontrib><creatorcontrib>JIANG JUNTAO</creatorcontrib><creatorcontrib>ZHONG YI</creatorcontrib><creatorcontrib>YANG JIANDANG</creatorcontrib><creatorcontrib>LIU YONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TONG QINFENG</au><au>ZHUO RONGRONG</au><au>JIANG JUNTAO</au><au>ZHONG YI</au><au>YANG JIANDANG</au><au>LIU YONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Escalator monitoring video anomaly detection method and system</title><date>2023-04-28</date><risdate>2023</risdate><abstract>The invention discloses an escalator monitoring video anomaly detection method and system, and relates to the field of escalator detection, and the method comprises the steps: obtaining a key point heat map corresponding to each frame of picture in a data set through a combined trained YOLOv5 target detection model and an HR-Net key point extraction model, and obtaining a key point inter-frame change map corresponding to the key point heat map; a convolutional neural network model is obtained by training a convolutional neural network through an image label pair including a key point inter-frame change graph and a corresponding label, and when detection is started, a to-be-detected escalator monitoring video picture set is input into a YOLOv5 target detection model frame by frame to obtain a pedestrian target frame position corresponding to each frame of picture. According to the method, pedestrian target frame positions are obtained, key point heat maps corresponding to the pedestrian target frame positions</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116030412A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | Escalator monitoring video anomaly detection method and system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T11%3A14%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=TONG%20QINFENG&rft.date=2023-04-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116030412A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |