Escalator monitoring video anomaly detection method and system

The invention discloses an escalator monitoring video anomaly detection method and system, and relates to the field of escalator detection, and the method comprises the steps: obtaining a key point heat map corresponding to each frame of picture in a data set through a combined trained YOLOv5 target...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: TONG QINFENG, ZHUO RONGRONG, JIANG JUNTAO, ZHONG YI, YANG JIANDANG, LIU YONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator TONG QINFENG
ZHUO RONGRONG
JIANG JUNTAO
ZHONG YI
YANG JIANDANG
LIU YONG
description The invention discloses an escalator monitoring video anomaly detection method and system, and relates to the field of escalator detection, and the method comprises the steps: obtaining a key point heat map corresponding to each frame of picture in a data set through a combined trained YOLOv5 target detection model and an HR-Net key point extraction model, and obtaining a key point inter-frame change map corresponding to the key point heat map; a convolutional neural network model is obtained by training a convolutional neural network through an image label pair including a key point inter-frame change graph and a corresponding label, and when detection is started, a to-be-detected escalator monitoring video picture set is input into a YOLOv5 target detection model frame by frame to obtain a pedestrian target frame position corresponding to each frame of picture. According to the method, pedestrian target frame positions are obtained, key point heat maps corresponding to the pedestrian target frame positions
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116030412A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116030412A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116030412A3</originalsourceid><addsrcrecordid>eNrjZLBzLU5OzEksyS9SyM3PywTSmXnpCmWZKan5Col5-bmJOZUKKaklqcklmfl5CrmpJRn5KUCJFIXiyuKS1FweBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnJqXWhLv7GdoaGZgbGBiaORoTIwaAJR_MO0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Escalator monitoring video anomaly detection method and system</title><source>esp@cenet</source><creator>TONG QINFENG ; ZHUO RONGRONG ; JIANG JUNTAO ; ZHONG YI ; YANG JIANDANG ; LIU YONG</creator><creatorcontrib>TONG QINFENG ; ZHUO RONGRONG ; JIANG JUNTAO ; ZHONG YI ; YANG JIANDANG ; LIU YONG</creatorcontrib><description>The invention discloses an escalator monitoring video anomaly detection method and system, and relates to the field of escalator detection, and the method comprises the steps: obtaining a key point heat map corresponding to each frame of picture in a data set through a combined trained YOLOv5 target detection model and an HR-Net key point extraction model, and obtaining a key point inter-frame change map corresponding to the key point heat map; a convolutional neural network model is obtained by training a convolutional neural network through an image label pair including a key point inter-frame change graph and a corresponding label, and when detection is started, a to-be-detected escalator monitoring video picture set is input into a YOLOv5 target detection model frame by frame to obtain a pedestrian target frame position corresponding to each frame of picture. According to the method, pedestrian target frame positions are obtained, key point heat maps corresponding to the pedestrian target frame positions</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230428&amp;DB=EPODOC&amp;CC=CN&amp;NR=116030412A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25566,76549</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230428&amp;DB=EPODOC&amp;CC=CN&amp;NR=116030412A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>TONG QINFENG</creatorcontrib><creatorcontrib>ZHUO RONGRONG</creatorcontrib><creatorcontrib>JIANG JUNTAO</creatorcontrib><creatorcontrib>ZHONG YI</creatorcontrib><creatorcontrib>YANG JIANDANG</creatorcontrib><creatorcontrib>LIU YONG</creatorcontrib><title>Escalator monitoring video anomaly detection method and system</title><description>The invention discloses an escalator monitoring video anomaly detection method and system, and relates to the field of escalator detection, and the method comprises the steps: obtaining a key point heat map corresponding to each frame of picture in a data set through a combined trained YOLOv5 target detection model and an HR-Net key point extraction model, and obtaining a key point inter-frame change map corresponding to the key point heat map; a convolutional neural network model is obtained by training a convolutional neural network through an image label pair including a key point inter-frame change graph and a corresponding label, and when detection is started, a to-be-detected escalator monitoring video picture set is input into a YOLOv5 target detection model frame by frame to obtain a pedestrian target frame position corresponding to each frame of picture. According to the method, pedestrian target frame positions are obtained, key point heat maps corresponding to the pedestrian target frame positions</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLBzLU5OzEksyS9SyM3PywTSmXnpCmWZKan5Col5-bmJOZUKKaklqcklmfl5CrmpJRn5KUCJFIXiyuKS1FweBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnJqXWhLv7GdoaGZgbGBiaORoTIwaAJR_MO0</recordid><startdate>20230428</startdate><enddate>20230428</enddate><creator>TONG QINFENG</creator><creator>ZHUO RONGRONG</creator><creator>JIANG JUNTAO</creator><creator>ZHONG YI</creator><creator>YANG JIANDANG</creator><creator>LIU YONG</creator><scope>EVB</scope></search><sort><creationdate>20230428</creationdate><title>Escalator monitoring video anomaly detection method and system</title><author>TONG QINFENG ; ZHUO RONGRONG ; JIANG JUNTAO ; ZHONG YI ; YANG JIANDANG ; LIU YONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116030412A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>TONG QINFENG</creatorcontrib><creatorcontrib>ZHUO RONGRONG</creatorcontrib><creatorcontrib>JIANG JUNTAO</creatorcontrib><creatorcontrib>ZHONG YI</creatorcontrib><creatorcontrib>YANG JIANDANG</creatorcontrib><creatorcontrib>LIU YONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TONG QINFENG</au><au>ZHUO RONGRONG</au><au>JIANG JUNTAO</au><au>ZHONG YI</au><au>YANG JIANDANG</au><au>LIU YONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Escalator monitoring video anomaly detection method and system</title><date>2023-04-28</date><risdate>2023</risdate><abstract>The invention discloses an escalator monitoring video anomaly detection method and system, and relates to the field of escalator detection, and the method comprises the steps: obtaining a key point heat map corresponding to each frame of picture in a data set through a combined trained YOLOv5 target detection model and an HR-Net key point extraction model, and obtaining a key point inter-frame change map corresponding to the key point heat map; a convolutional neural network model is obtained by training a convolutional neural network through an image label pair including a key point inter-frame change graph and a corresponding label, and when detection is started, a to-be-detected escalator monitoring video picture set is input into a YOLOv5 target detection model frame by frame to obtain a pedestrian target frame position corresponding to each frame of picture. According to the method, pedestrian target frame positions are obtained, key point heat maps corresponding to the pedestrian target frame positions</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116030412A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Escalator monitoring video anomaly detection method and system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T11%3A14%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=TONG%20QINFENG&rft.date=2023-04-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116030412A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true