Distributed wind storage power station cluster day-ahead output optimization method, scheduling method and terminal
The invention discloses a distributed wind storage power station cluster day-ahead output optimization method, a scheduling method and a terminal, and the optimization method comprises the steps: an aggregation layer uses the retail electricity price formulated by the aggregation layer for each time...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | HUANG LIXIN CHANG JIN XU BIN LI WENMING OUYANG ZHIGUO TAN ZHENGUO CAO YIJIA ZHOU GUANDONG PAN LIQIANG NIU GUOZHI XIAO SHUAI |
description | The invention discloses a distributed wind storage power station cluster day-ahead output optimization method, a scheduling method and a terminal, and the optimization method comprises the steps: an aggregation layer uses the retail electricity price formulated by the aggregation layer for each time period of each wind storage power station, the total electricity selling power of the aggregation layer, and the charging and discharging power of an energy storage system owned by the aggregation layer as decision variables; establishing a first optimization model by taking the minimum operation cost as a target; each wind storage power station in the wind storage power station layer establishes a second optimization model by taking the electricity selling power of the wind storage power station, the generating power of a wind turbine generator, the discharging power of energy storage and the charging power as decision variables and taking the maximum generating income as a target; and forming a master-slave game |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116011783A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116011783A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116011783A3</originalsourceid><addsrcrecordid>eNqNjLEKwkAQRNNYiPoPa2_AI6C2EhUrK_uw5tZk4XJ3ZPcI-vUe6AdYDW94M_NCTiw68iMpWZjYWxANI3YEMUw0ZkLl4KF1STSzxVeJPaGFkDQmhRCVB35_rYG0D3YD0vZkk2Pf_SrA_Jz3A3t0y2L2RCe0-uWiWF_O9_paUgwNScSWPGlT34zZbY3ZH6pj9Y_zAdTgRWY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Distributed wind storage power station cluster day-ahead output optimization method, scheduling method and terminal</title><source>esp@cenet</source><creator>HUANG LIXIN ; CHANG JIN ; XU BIN ; LI WENMING ; OUYANG ZHIGUO ; TAN ZHENGUO ; CAO YIJIA ; ZHOU GUANDONG ; PAN LIQIANG ; NIU GUOZHI ; XIAO SHUAI</creator><creatorcontrib>HUANG LIXIN ; CHANG JIN ; XU BIN ; LI WENMING ; OUYANG ZHIGUO ; TAN ZHENGUO ; CAO YIJIA ; ZHOU GUANDONG ; PAN LIQIANG ; NIU GUOZHI ; XIAO SHUAI</creatorcontrib><description>The invention discloses a distributed wind storage power station cluster day-ahead output optimization method, a scheduling method and a terminal, and the optimization method comprises the steps: an aggregation layer uses the retail electricity price formulated by the aggregation layer for each time period of each wind storage power station, the total electricity selling power of the aggregation layer, and the charging and discharging power of an energy storage system owned by the aggregation layer as decision variables; establishing a first optimization model by taking the minimum operation cost as a target; each wind storage power station in the wind storage power station layer establishes a second optimization model by taking the electricity selling power of the wind storage power station, the generating power of a wind turbine generator, the discharging power of energy storage and the charging power as decision variables and taking the maximum generating income as a target; and forming a master-slave game</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230425&DB=EPODOC&CC=CN&NR=116011783A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25566,76549</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230425&DB=EPODOC&CC=CN&NR=116011783A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HUANG LIXIN</creatorcontrib><creatorcontrib>CHANG JIN</creatorcontrib><creatorcontrib>XU BIN</creatorcontrib><creatorcontrib>LI WENMING</creatorcontrib><creatorcontrib>OUYANG ZHIGUO</creatorcontrib><creatorcontrib>TAN ZHENGUO</creatorcontrib><creatorcontrib>CAO YIJIA</creatorcontrib><creatorcontrib>ZHOU GUANDONG</creatorcontrib><creatorcontrib>PAN LIQIANG</creatorcontrib><creatorcontrib>NIU GUOZHI</creatorcontrib><creatorcontrib>XIAO SHUAI</creatorcontrib><title>Distributed wind storage power station cluster day-ahead output optimization method, scheduling method and terminal</title><description>The invention discloses a distributed wind storage power station cluster day-ahead output optimization method, a scheduling method and a terminal, and the optimization method comprises the steps: an aggregation layer uses the retail electricity price formulated by the aggregation layer for each time period of each wind storage power station, the total electricity selling power of the aggregation layer, and the charging and discharging power of an energy storage system owned by the aggregation layer as decision variables; establishing a first optimization model by taking the minimum operation cost as a target; each wind storage power station in the wind storage power station layer establishes a second optimization model by taking the electricity selling power of the wind storage power station, the generating power of a wind turbine generator, the discharging power of energy storage and the charging power as decision variables and taking the maximum generating income as a target; and forming a master-slave game</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjLEKwkAQRNNYiPoPa2_AI6C2EhUrK_uw5tZk4XJ3ZPcI-vUe6AdYDW94M_NCTiw68iMpWZjYWxANI3YEMUw0ZkLl4KF1STSzxVeJPaGFkDQmhRCVB35_rYG0D3YD0vZkk2Pf_SrA_Jz3A3t0y2L2RCe0-uWiWF_O9_paUgwNScSWPGlT34zZbY3ZH6pj9Y_zAdTgRWY</recordid><startdate>20230425</startdate><enddate>20230425</enddate><creator>HUANG LIXIN</creator><creator>CHANG JIN</creator><creator>XU BIN</creator><creator>LI WENMING</creator><creator>OUYANG ZHIGUO</creator><creator>TAN ZHENGUO</creator><creator>CAO YIJIA</creator><creator>ZHOU GUANDONG</creator><creator>PAN LIQIANG</creator><creator>NIU GUOZHI</creator><creator>XIAO SHUAI</creator><scope>EVB</scope></search><sort><creationdate>20230425</creationdate><title>Distributed wind storage power station cluster day-ahead output optimization method, scheduling method and terminal</title><author>HUANG LIXIN ; CHANG JIN ; XU BIN ; LI WENMING ; OUYANG ZHIGUO ; TAN ZHENGUO ; CAO YIJIA ; ZHOU GUANDONG ; PAN LIQIANG ; NIU GUOZHI ; XIAO SHUAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116011783A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>HUANG LIXIN</creatorcontrib><creatorcontrib>CHANG JIN</creatorcontrib><creatorcontrib>XU BIN</creatorcontrib><creatorcontrib>LI WENMING</creatorcontrib><creatorcontrib>OUYANG ZHIGUO</creatorcontrib><creatorcontrib>TAN ZHENGUO</creatorcontrib><creatorcontrib>CAO YIJIA</creatorcontrib><creatorcontrib>ZHOU GUANDONG</creatorcontrib><creatorcontrib>PAN LIQIANG</creatorcontrib><creatorcontrib>NIU GUOZHI</creatorcontrib><creatorcontrib>XIAO SHUAI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HUANG LIXIN</au><au>CHANG JIN</au><au>XU BIN</au><au>LI WENMING</au><au>OUYANG ZHIGUO</au><au>TAN ZHENGUO</au><au>CAO YIJIA</au><au>ZHOU GUANDONG</au><au>PAN LIQIANG</au><au>NIU GUOZHI</au><au>XIAO SHUAI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Distributed wind storage power station cluster day-ahead output optimization method, scheduling method and terminal</title><date>2023-04-25</date><risdate>2023</risdate><abstract>The invention discloses a distributed wind storage power station cluster day-ahead output optimization method, a scheduling method and a terminal, and the optimization method comprises the steps: an aggregation layer uses the retail electricity price formulated by the aggregation layer for each time period of each wind storage power station, the total electricity selling power of the aggregation layer, and the charging and discharging power of an energy storage system owned by the aggregation layer as decision variables; establishing a first optimization model by taking the minimum operation cost as a target; each wind storage power station in the wind storage power station layer establishes a second optimization model by taking the electricity selling power of the wind storage power station, the generating power of a wind turbine generator, the discharging power of energy storage and the charging power as decision variables and taking the maximum generating income as a target; and forming a master-slave game</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116011783A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Distributed wind storage power station cluster day-ahead output optimization method, scheduling method and terminal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T23%3A21%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HUANG%20LIXIN&rft.date=2023-04-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116011783A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |