ResNet-based gamma energy spectrum data analysis method, storage medium and ResNet-based gamma energy spectrum data analysis system

The invention relates to a ResNet-based gamma energy spectrum data analysis method. The method comprises the steps of generating gamma energy spectrum data for training by utilizing Monte Carlo simulation; performing normalization processing on each channel of counting in the gamma energy spectrum;...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIANG RUNCHENG, LINGHU RENJING, ZHAO RI, DAI YULING, LIU ZHAOXING, WANG JIA, CHEN FAGUO, LIU NA, ZHANG JING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIANG RUNCHENG
LINGHU RENJING
ZHAO RI
DAI YULING
LIU ZHAOXING
WANG JIA
CHEN FAGUO
LIU NA
ZHANG JING
description The invention relates to a ResNet-based gamma energy spectrum data analysis method. The method comprises the steps of generating gamma energy spectrum data for training by utilizing Monte Carlo simulation; performing normalization processing on each channel of counting in the gamma energy spectrum; taking each processed count as input, taking energy and quantity of gamma rays as output in the form of a one-dimensional array, and building a ResNet neural network model; training the built model by adopting a stochastic gradient descent algorithm; and obtaining predicted values of gamma ray energy and quantity through the trained model. The invention also provides a storage medium and a ResNet-based gamma energy spectrum data analysis system, and by adopting the ResNet-based gamma energy spectrum data analysis method, the storage medium and the system, the precision defects of an existing method in gamma ray energy and quantity analysis can be made up, and the accuracy of radioactive quantitative analysis is imp
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116010785A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116010785A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116010785A3</originalsourceid><addsrcrecordid>eNqVjLsKwkAQAK-xEPUf1t5ADvHRSlCsUoh9WHObM5B7cLsWV_vjXuEHaDUMDDNX7xtxS1I9kMmARecQyFOyGThSL-nlwKAgoMcp88jgSJ7BbIAlJLRU3IwlQm_g7xdnFnJLNRtwYlp9uVDry_neXCuKoSOO2JeLdE2r9b7W9eG4O21_aT4TPkpV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ResNet-based gamma energy spectrum data analysis method, storage medium and ResNet-based gamma energy spectrum data analysis system</title><source>esp@cenet</source><creator>LIANG RUNCHENG ; LINGHU RENJING ; ZHAO RI ; DAI YULING ; LIU ZHAOXING ; WANG JIA ; CHEN FAGUO ; LIU NA ; ZHANG JING</creator><creatorcontrib>LIANG RUNCHENG ; LINGHU RENJING ; ZHAO RI ; DAI YULING ; LIU ZHAOXING ; WANG JIA ; CHEN FAGUO ; LIU NA ; ZHANG JING</creatorcontrib><description>The invention relates to a ResNet-based gamma energy spectrum data analysis method. The method comprises the steps of generating gamma energy spectrum data for training by utilizing Monte Carlo simulation; performing normalization processing on each channel of counting in the gamma energy spectrum; taking each processed count as input, taking energy and quantity of gamma rays as output in the form of a one-dimensional array, and building a ResNet neural network model; training the built model by adopting a stochastic gradient descent algorithm; and obtaining predicted values of gamma ray energy and quantity through the trained model. The invention also provides a storage medium and a ResNet-based gamma energy spectrum data analysis system, and by adopting the ResNet-based gamma energy spectrum data analysis method, the storage medium and the system, the precision defects of an existing method in gamma ray energy and quantity analysis can be made up, and the accuracy of radioactive quantitative analysis is imp</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230425&amp;DB=EPODOC&amp;CC=CN&amp;NR=116010785A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230425&amp;DB=EPODOC&amp;CC=CN&amp;NR=116010785A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIANG RUNCHENG</creatorcontrib><creatorcontrib>LINGHU RENJING</creatorcontrib><creatorcontrib>ZHAO RI</creatorcontrib><creatorcontrib>DAI YULING</creatorcontrib><creatorcontrib>LIU ZHAOXING</creatorcontrib><creatorcontrib>WANG JIA</creatorcontrib><creatorcontrib>CHEN FAGUO</creatorcontrib><creatorcontrib>LIU NA</creatorcontrib><creatorcontrib>ZHANG JING</creatorcontrib><title>ResNet-based gamma energy spectrum data analysis method, storage medium and ResNet-based gamma energy spectrum data analysis system</title><description>The invention relates to a ResNet-based gamma energy spectrum data analysis method. The method comprises the steps of generating gamma energy spectrum data for training by utilizing Monte Carlo simulation; performing normalization processing on each channel of counting in the gamma energy spectrum; taking each processed count as input, taking energy and quantity of gamma rays as output in the form of a one-dimensional array, and building a ResNet neural network model; training the built model by adopting a stochastic gradient descent algorithm; and obtaining predicted values of gamma ray energy and quantity through the trained model. The invention also provides a storage medium and a ResNet-based gamma energy spectrum data analysis system, and by adopting the ResNet-based gamma energy spectrum data analysis method, the storage medium and the system, the precision defects of an existing method in gamma ray energy and quantity analysis can be made up, and the accuracy of radioactive quantitative analysis is imp</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqVjLsKwkAQAK-xEPUf1t5ADvHRSlCsUoh9WHObM5B7cLsWV_vjXuEHaDUMDDNX7xtxS1I9kMmARecQyFOyGThSL-nlwKAgoMcp88jgSJ7BbIAlJLRU3IwlQm_g7xdnFnJLNRtwYlp9uVDry_neXCuKoSOO2JeLdE2r9b7W9eG4O21_aT4TPkpV</recordid><startdate>20230425</startdate><enddate>20230425</enddate><creator>LIANG RUNCHENG</creator><creator>LINGHU RENJING</creator><creator>ZHAO RI</creator><creator>DAI YULING</creator><creator>LIU ZHAOXING</creator><creator>WANG JIA</creator><creator>CHEN FAGUO</creator><creator>LIU NA</creator><creator>ZHANG JING</creator><scope>EVB</scope></search><sort><creationdate>20230425</creationdate><title>ResNet-based gamma energy spectrum data analysis method, storage medium and ResNet-based gamma energy spectrum data analysis system</title><author>LIANG RUNCHENG ; LINGHU RENJING ; ZHAO RI ; DAI YULING ; LIU ZHAOXING ; WANG JIA ; CHEN FAGUO ; LIU NA ; ZHANG JING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116010785A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIANG RUNCHENG</creatorcontrib><creatorcontrib>LINGHU RENJING</creatorcontrib><creatorcontrib>ZHAO RI</creatorcontrib><creatorcontrib>DAI YULING</creatorcontrib><creatorcontrib>LIU ZHAOXING</creatorcontrib><creatorcontrib>WANG JIA</creatorcontrib><creatorcontrib>CHEN FAGUO</creatorcontrib><creatorcontrib>LIU NA</creatorcontrib><creatorcontrib>ZHANG JING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIANG RUNCHENG</au><au>LINGHU RENJING</au><au>ZHAO RI</au><au>DAI YULING</au><au>LIU ZHAOXING</au><au>WANG JIA</au><au>CHEN FAGUO</au><au>LIU NA</au><au>ZHANG JING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ResNet-based gamma energy spectrum data analysis method, storage medium and ResNet-based gamma energy spectrum data analysis system</title><date>2023-04-25</date><risdate>2023</risdate><abstract>The invention relates to a ResNet-based gamma energy spectrum data analysis method. The method comprises the steps of generating gamma energy spectrum data for training by utilizing Monte Carlo simulation; performing normalization processing on each channel of counting in the gamma energy spectrum; taking each processed count as input, taking energy and quantity of gamma rays as output in the form of a one-dimensional array, and building a ResNet neural network model; training the built model by adopting a stochastic gradient descent algorithm; and obtaining predicted values of gamma ray energy and quantity through the trained model. The invention also provides a storage medium and a ResNet-based gamma energy spectrum data analysis system, and by adopting the ResNet-based gamma energy spectrum data analysis method, the storage medium and the system, the precision defects of an existing method in gamma ray energy and quantity analysis can be made up, and the accuracy of radioactive quantitative analysis is imp</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116010785A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title ResNet-based gamma energy spectrum data analysis method, storage medium and ResNet-based gamma energy spectrum data analysis system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A23%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIANG%20RUNCHENG&rft.date=2023-04-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116010785A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true