Intelligent prediction method for recurrence of hepatolithiasis based on multi-source heterogeneous data fusion

The invention provides a multi-source heterogeneous data fusion-based intelligent prediction method for recurrence of hepatic duct calculus, and the method comprises the following steps: S1, obtaining a CT two-dimensional image and an MRI two-dimensional image of the abdomen of a hepatic duct calcul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG PING, CAI NIAN, GONG CHIHAO, OUYANG WENSHENG, WANG HAN, XIE YIYING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG PING
CAI NIAN
GONG CHIHAO
OUYANG WENSHENG
WANG HAN
XIE YIYING
description The invention provides a multi-source heterogeneous data fusion-based intelligent prediction method for recurrence of hepatic duct calculus, and the method comprises the following steps: S1, obtaining a CT two-dimensional image and an MRI two-dimensional image of the abdomen of a hepatic duct calculus patient, and carrying out the image reconstruction of the CT two-dimensional image and the MRI two-dimensional image through a diffusion model, image depth features are extracted from the reconstructed CT three-dimensional image and the reconstructed MRI three-dimensional image; preoperative blood test indexes, hepatic duct stenosis/expansion degree data and hepatic duct disease occurrence time sequences of the hepatic duct calculus patients are obtained, and fusion features of clinical data are extracted and obtained; and S2, carrying out feature fusion on the image depth features and the fusion features of the clinical data, and then inputting the image depth features and the fusion features into a pre-trained
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115965618A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115965618A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115965618A3</originalsourceid><addsrcrecordid>eNqNjDEKAjEQAK-xEPUP6wOuOORESzkUbazsj5hszELMhuzm_0bwAVbTzMyy41tSjJFemBRyQUdWiRO8UQM78FygoK2lYLII7CFgNsqRNJAREngaQQffokalXriWJgZULNymyFXAGTXgq7Txult4EwU3P6667eX8mK49Zp5RsrGt0Xm6D8N43I_74XDa_eN8AKwERCA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Intelligent prediction method for recurrence of hepatolithiasis based on multi-source heterogeneous data fusion</title><source>esp@cenet</source><creator>WANG PING ; CAI NIAN ; GONG CHIHAO ; OUYANG WENSHENG ; WANG HAN ; XIE YIYING</creator><creatorcontrib>WANG PING ; CAI NIAN ; GONG CHIHAO ; OUYANG WENSHENG ; WANG HAN ; XIE YIYING</creatorcontrib><description>The invention provides a multi-source heterogeneous data fusion-based intelligent prediction method for recurrence of hepatic duct calculus, and the method comprises the following steps: S1, obtaining a CT two-dimensional image and an MRI two-dimensional image of the abdomen of a hepatic duct calculus patient, and carrying out the image reconstruction of the CT two-dimensional image and the MRI two-dimensional image through a diffusion model, image depth features are extracted from the reconstructed CT three-dimensional image and the reconstructed MRI three-dimensional image; preoperative blood test indexes, hepatic duct stenosis/expansion degree data and hepatic duct disease occurrence time sequences of the hepatic duct calculus patients are obtained, and fusion features of clinical data are extracted and obtained; and S2, carrying out feature fusion on the image depth features and the fusion features of the clinical data, and then inputting the image depth features and the fusion features into a pre-trained</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230414&amp;DB=EPODOC&amp;CC=CN&amp;NR=115965618A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230414&amp;DB=EPODOC&amp;CC=CN&amp;NR=115965618A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG PING</creatorcontrib><creatorcontrib>CAI NIAN</creatorcontrib><creatorcontrib>GONG CHIHAO</creatorcontrib><creatorcontrib>OUYANG WENSHENG</creatorcontrib><creatorcontrib>WANG HAN</creatorcontrib><creatorcontrib>XIE YIYING</creatorcontrib><title>Intelligent prediction method for recurrence of hepatolithiasis based on multi-source heterogeneous data fusion</title><description>The invention provides a multi-source heterogeneous data fusion-based intelligent prediction method for recurrence of hepatic duct calculus, and the method comprises the following steps: S1, obtaining a CT two-dimensional image and an MRI two-dimensional image of the abdomen of a hepatic duct calculus patient, and carrying out the image reconstruction of the CT two-dimensional image and the MRI two-dimensional image through a diffusion model, image depth features are extracted from the reconstructed CT three-dimensional image and the reconstructed MRI three-dimensional image; preoperative blood test indexes, hepatic duct stenosis/expansion degree data and hepatic duct disease occurrence time sequences of the hepatic duct calculus patients are obtained, and fusion features of clinical data are extracted and obtained; and S2, carrying out feature fusion on the image depth features and the fusion features of the clinical data, and then inputting the image depth features and the fusion features into a pre-trained</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEKAjEQAK-xEPUP6wOuOORESzkUbazsj5hszELMhuzm_0bwAVbTzMyy41tSjJFemBRyQUdWiRO8UQM78FygoK2lYLII7CFgNsqRNJAREngaQQffokalXriWJgZULNymyFXAGTXgq7Txult4EwU3P6667eX8mK49Zp5RsrGt0Xm6D8N43I_74XDa_eN8AKwERCA</recordid><startdate>20230414</startdate><enddate>20230414</enddate><creator>WANG PING</creator><creator>CAI NIAN</creator><creator>GONG CHIHAO</creator><creator>OUYANG WENSHENG</creator><creator>WANG HAN</creator><creator>XIE YIYING</creator><scope>EVB</scope></search><sort><creationdate>20230414</creationdate><title>Intelligent prediction method for recurrence of hepatolithiasis based on multi-source heterogeneous data fusion</title><author>WANG PING ; CAI NIAN ; GONG CHIHAO ; OUYANG WENSHENG ; WANG HAN ; XIE YIYING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115965618A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG PING</creatorcontrib><creatorcontrib>CAI NIAN</creatorcontrib><creatorcontrib>GONG CHIHAO</creatorcontrib><creatorcontrib>OUYANG WENSHENG</creatorcontrib><creatorcontrib>WANG HAN</creatorcontrib><creatorcontrib>XIE YIYING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG PING</au><au>CAI NIAN</au><au>GONG CHIHAO</au><au>OUYANG WENSHENG</au><au>WANG HAN</au><au>XIE YIYING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Intelligent prediction method for recurrence of hepatolithiasis based on multi-source heterogeneous data fusion</title><date>2023-04-14</date><risdate>2023</risdate><abstract>The invention provides a multi-source heterogeneous data fusion-based intelligent prediction method for recurrence of hepatic duct calculus, and the method comprises the following steps: S1, obtaining a CT two-dimensional image and an MRI two-dimensional image of the abdomen of a hepatic duct calculus patient, and carrying out the image reconstruction of the CT two-dimensional image and the MRI two-dimensional image through a diffusion model, image depth features are extracted from the reconstructed CT three-dimensional image and the reconstructed MRI three-dimensional image; preoperative blood test indexes, hepatic duct stenosis/expansion degree data and hepatic duct disease occurrence time sequences of the hepatic duct calculus patients are obtained, and fusion features of clinical data are extracted and obtained; and S2, carrying out feature fusion on the image depth features and the fusion features of the clinical data, and then inputting the image depth features and the fusion features into a pre-trained</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115965618A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Intelligent prediction method for recurrence of hepatolithiasis based on multi-source heterogeneous data fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A02%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20PING&rft.date=2023-04-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115965618A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true