Lithium battery detection data preprocessing method based on multi-feature fusion

The invention belongs to the technical field of lithium ion battery remaining service life prediction, and relates to a lithium battery detection data preprocessing method based on multi-feature fusion. According to the preprocessing method, a lithium ion battery test data set is adopted, and a gray...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MOU JIANHUI, GAO LIXI, TANG YI, WANG SHUHAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MOU JIANHUI
GAO LIXI
TANG YI
WANG SHUHAO
description The invention belongs to the technical field of lithium ion battery remaining service life prediction, and relates to a lithium battery detection data preprocessing method based on multi-feature fusion. According to the preprocessing method, a lithium ion battery test data set is adopted, and a gray correlation analysis method is introduced to extract a lithium battery test data set of an equal-voltage drop time sequence and a discharge battery equal-temperature rise time sequence which have strong correlation with a battery capacity index according to the change condition of each index of the battery during charging and discharging; and carrying out feature modeling on the two time sequence indexes, and providing a health factor based on fusion of the two time sequences so as to extract the simplest data for subsequent residual service life prediction and reveal the inherent rule of battery life attenuation. The method aims to solve the problems of high dimensionality, data redundancy, low calculation effici
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115963409A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115963409A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115963409A3</originalsourceid><addsrcrecordid>eNqNy70KwjAUhuEsDqLew_ECCpaq0FGK4iCC4F5i8sUGmh-Sk8G7N4MX4PQuz7sUj5vlyRZHL8mM9CENhmIbPGnJkmJCTEEhZ-vf5MBT0NVmaKrElZltYyC5JJApuX5rsTByztj8uhLby_k5XBvEMCJHqeDB43Bv20N_7Pa7_tT9Y74mGzhN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Lithium battery detection data preprocessing method based on multi-feature fusion</title><source>esp@cenet</source><creator>MOU JIANHUI ; GAO LIXI ; TANG YI ; WANG SHUHAO</creator><creatorcontrib>MOU JIANHUI ; GAO LIXI ; TANG YI ; WANG SHUHAO</creatorcontrib><description>The invention belongs to the technical field of lithium ion battery remaining service life prediction, and relates to a lithium battery detection data preprocessing method based on multi-feature fusion. According to the preprocessing method, a lithium ion battery test data set is adopted, and a gray correlation analysis method is introduced to extract a lithium battery test data set of an equal-voltage drop time sequence and a discharge battery equal-temperature rise time sequence which have strong correlation with a battery capacity index according to the change condition of each index of the battery during charging and discharging; and carrying out feature modeling on the two time sequence indexes, and providing a health factor based on fusion of the two time sequences so as to extract the simplest data for subsequent residual service life prediction and reveal the inherent rule of battery life attenuation. The method aims to solve the problems of high dimensionality, data redundancy, low calculation effici</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; TESTING</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230414&amp;DB=EPODOC&amp;CC=CN&amp;NR=115963409A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230414&amp;DB=EPODOC&amp;CC=CN&amp;NR=115963409A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MOU JIANHUI</creatorcontrib><creatorcontrib>GAO LIXI</creatorcontrib><creatorcontrib>TANG YI</creatorcontrib><creatorcontrib>WANG SHUHAO</creatorcontrib><title>Lithium battery detection data preprocessing method based on multi-feature fusion</title><description>The invention belongs to the technical field of lithium ion battery remaining service life prediction, and relates to a lithium battery detection data preprocessing method based on multi-feature fusion. According to the preprocessing method, a lithium ion battery test data set is adopted, and a gray correlation analysis method is introduced to extract a lithium battery test data set of an equal-voltage drop time sequence and a discharge battery equal-temperature rise time sequence which have strong correlation with a battery capacity index according to the change condition of each index of the battery during charging and discharging; and carrying out feature modeling on the two time sequence indexes, and providing a health factor based on fusion of the two time sequences so as to extract the simplest data for subsequent residual service life prediction and reveal the inherent rule of battery life attenuation. The method aims to solve the problems of high dimensionality, data redundancy, low calculation effici</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy70KwjAUhuEsDqLew_ECCpaq0FGK4iCC4F5i8sUGmh-Sk8G7N4MX4PQuz7sUj5vlyRZHL8mM9CENhmIbPGnJkmJCTEEhZ-vf5MBT0NVmaKrElZltYyC5JJApuX5rsTByztj8uhLby_k5XBvEMCJHqeDB43Bv20N_7Pa7_tT9Y74mGzhN</recordid><startdate>20230414</startdate><enddate>20230414</enddate><creator>MOU JIANHUI</creator><creator>GAO LIXI</creator><creator>TANG YI</creator><creator>WANG SHUHAO</creator><scope>EVB</scope></search><sort><creationdate>20230414</creationdate><title>Lithium battery detection data preprocessing method based on multi-feature fusion</title><author>MOU JIANHUI ; GAO LIXI ; TANG YI ; WANG SHUHAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115963409A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>MOU JIANHUI</creatorcontrib><creatorcontrib>GAO LIXI</creatorcontrib><creatorcontrib>TANG YI</creatorcontrib><creatorcontrib>WANG SHUHAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MOU JIANHUI</au><au>GAO LIXI</au><au>TANG YI</au><au>WANG SHUHAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Lithium battery detection data preprocessing method based on multi-feature fusion</title><date>2023-04-14</date><risdate>2023</risdate><abstract>The invention belongs to the technical field of lithium ion battery remaining service life prediction, and relates to a lithium battery detection data preprocessing method based on multi-feature fusion. According to the preprocessing method, a lithium ion battery test data set is adopted, and a gray correlation analysis method is introduced to extract a lithium battery test data set of an equal-voltage drop time sequence and a discharge battery equal-temperature rise time sequence which have strong correlation with a battery capacity index according to the change condition of each index of the battery during charging and discharging; and carrying out feature modeling on the two time sequence indexes, and providing a health factor based on fusion of the two time sequences so as to extract the simplest data for subsequent residual service life prediction and reveal the inherent rule of battery life attenuation. The method aims to solve the problems of high dimensionality, data redundancy, low calculation effici</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115963409A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
MEASURING
MEASURING ELECTRIC VARIABLES
MEASURING MAGNETIC VARIABLES
PHYSICS
TESTING
title Lithium battery detection data preprocessing method based on multi-feature fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MOU%20JIANHUI&rft.date=2023-04-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115963409A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true