Distribution area line loss prediction method based on support vector machine
The invention relates to a transformer area line loss prediction method based on a support vector machine, and the method comprises the following steps: 1, determining indexes which may influence the line loss according to the existing line loss rate data, and determining a training set and a test s...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LI SICEN LEI TINGZHEN FAN QIHONG DONG HAIBIN LI JINZE ZHAO XIN JIAO QIULIANG LIU XU ZHAO SONGHE AN RAN CHEN ANG YIN YUE ZHOU LINJIE ZHAO HONGFENG YIN JIAN IKEZAWA AKIRA LIU JINQI LU DAOMING YUAN WENQIANG |
description | The invention relates to a transformer area line loss prediction method based on a support vector machine, and the method comprises the following steps: 1, determining indexes which may influence the line loss according to the existing line loss rate data, and determining a training set and a test set which are needed by the support vector machine; step 2, constructing a transformer area line loss prediction model based on the training set data obtained in the step 1, and training the transformer area line loss prediction model to obtain a trained transformer area line loss prediction model; and step 3, obtaining a transformer area line loss prediction result based on the transformer area line loss prediction model trained in the step 2. The technical problems that a traditional method is large in calculation amount and poor in generalization can be solved.
本发明涉及一种基于支持向量机的台区线损预测方法,包括以下步骤:步骤1、根据现有的线损率数据确定可能影响线损的指标,并确定支持向量机所需的训练集和测试集;步骤2、基于步骤1得到的训练集数据,构建台区线损预测模型,并对其进行训练,得到训练好的台区线损预测模型;步骤3、基于步骤2训练好的台区线损预测模型,得到台区 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115952448A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115952448A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115952448A3</originalsourceid><addsrcrecordid>eNrjZPB1ySwuKcpMKi3JzM9TSCxKTVTIycxLVcjJLy5WKChKTclMBsvkppZk5KcoJCUWp6YoAPnFpQUF-UUlCmWpySX5RQq5ickZQG08DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxOTUvtSTe2c_Q0NTS1MjExMLRmBg1AAvMNpc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Distribution area line loss prediction method based on support vector machine</title><source>esp@cenet</source><creator>LI SICEN ; LEI TINGZHEN ; FAN QIHONG ; DONG HAIBIN ; LI JINZE ; ZHAO XIN ; JIAO QIULIANG ; LIU XU ; ZHAO SONGHE ; AN RAN ; CHEN ANG ; YIN YUE ; ZHOU LINJIE ; ZHAO HONGFENG ; YIN JIAN ; IKEZAWA AKIRA ; LIU JINQI ; LU DAOMING ; YUAN WENQIANG</creator><creatorcontrib>LI SICEN ; LEI TINGZHEN ; FAN QIHONG ; DONG HAIBIN ; LI JINZE ; ZHAO XIN ; JIAO QIULIANG ; LIU XU ; ZHAO SONGHE ; AN RAN ; CHEN ANG ; YIN YUE ; ZHOU LINJIE ; ZHAO HONGFENG ; YIN JIAN ; IKEZAWA AKIRA ; LIU JINQI ; LU DAOMING ; YUAN WENQIANG</creatorcontrib><description>The invention relates to a transformer area line loss prediction method based on a support vector machine, and the method comprises the following steps: 1, determining indexes which may influence the line loss according to the existing line loss rate data, and determining a training set and a test set which are needed by the support vector machine; step 2, constructing a transformer area line loss prediction model based on the training set data obtained in the step 1, and training the transformer area line loss prediction model to obtain a trained transformer area line loss prediction model; and step 3, obtaining a transformer area line loss prediction result based on the transformer area line loss prediction model trained in the step 2. The technical problems that a traditional method is large in calculation amount and poor in generalization can be solved.
本发明涉及一种基于支持向量机的台区线损预测方法,包括以下步骤:步骤1、根据现有的线损率数据确定可能影响线损的指标,并确定支持向量机所需的训练集和测试集;步骤2、基于步骤1得到的训练集数据,构建台区线损预测模型,并对其进行训练,得到训练好的台区线损预测模型;步骤3、基于步骤2训练好的台区线损预测模型,得到台区</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230411&DB=EPODOC&CC=CN&NR=115952448A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230411&DB=EPODOC&CC=CN&NR=115952448A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI SICEN</creatorcontrib><creatorcontrib>LEI TINGZHEN</creatorcontrib><creatorcontrib>FAN QIHONG</creatorcontrib><creatorcontrib>DONG HAIBIN</creatorcontrib><creatorcontrib>LI JINZE</creatorcontrib><creatorcontrib>ZHAO XIN</creatorcontrib><creatorcontrib>JIAO QIULIANG</creatorcontrib><creatorcontrib>LIU XU</creatorcontrib><creatorcontrib>ZHAO SONGHE</creatorcontrib><creatorcontrib>AN RAN</creatorcontrib><creatorcontrib>CHEN ANG</creatorcontrib><creatorcontrib>YIN YUE</creatorcontrib><creatorcontrib>ZHOU LINJIE</creatorcontrib><creatorcontrib>ZHAO HONGFENG</creatorcontrib><creatorcontrib>YIN JIAN</creatorcontrib><creatorcontrib>IKEZAWA AKIRA</creatorcontrib><creatorcontrib>LIU JINQI</creatorcontrib><creatorcontrib>LU DAOMING</creatorcontrib><creatorcontrib>YUAN WENQIANG</creatorcontrib><title>Distribution area line loss prediction method based on support vector machine</title><description>The invention relates to a transformer area line loss prediction method based on a support vector machine, and the method comprises the following steps: 1, determining indexes which may influence the line loss according to the existing line loss rate data, and determining a training set and a test set which are needed by the support vector machine; step 2, constructing a transformer area line loss prediction model based on the training set data obtained in the step 1, and training the transformer area line loss prediction model to obtain a trained transformer area line loss prediction model; and step 3, obtaining a transformer area line loss prediction result based on the transformer area line loss prediction model trained in the step 2. The technical problems that a traditional method is large in calculation amount and poor in generalization can be solved.
本发明涉及一种基于支持向量机的台区线损预测方法,包括以下步骤:步骤1、根据现有的线损率数据确定可能影响线损的指标,并确定支持向量机所需的训练集和测试集;步骤2、基于步骤1得到的训练集数据,构建台区线损预测模型,并对其进行训练,得到训练好的台区线损预测模型;步骤3、基于步骤2训练好的台区线损预测模型,得到台区</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPB1ySwuKcpMKi3JzM9TSCxKTVTIycxLVcjJLy5WKChKTclMBsvkppZk5KcoJCUWp6YoAPnFpQUF-UUlCmWpySX5RQq5ickZQG08DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxOTUvtSTe2c_Q0NTS1MjExMLRmBg1AAvMNpc</recordid><startdate>20230411</startdate><enddate>20230411</enddate><creator>LI SICEN</creator><creator>LEI TINGZHEN</creator><creator>FAN QIHONG</creator><creator>DONG HAIBIN</creator><creator>LI JINZE</creator><creator>ZHAO XIN</creator><creator>JIAO QIULIANG</creator><creator>LIU XU</creator><creator>ZHAO SONGHE</creator><creator>AN RAN</creator><creator>CHEN ANG</creator><creator>YIN YUE</creator><creator>ZHOU LINJIE</creator><creator>ZHAO HONGFENG</creator><creator>YIN JIAN</creator><creator>IKEZAWA AKIRA</creator><creator>LIU JINQI</creator><creator>LU DAOMING</creator><creator>YUAN WENQIANG</creator><scope>EVB</scope></search><sort><creationdate>20230411</creationdate><title>Distribution area line loss prediction method based on support vector machine</title><author>LI SICEN ; LEI TINGZHEN ; FAN QIHONG ; DONG HAIBIN ; LI JINZE ; ZHAO XIN ; JIAO QIULIANG ; LIU XU ; ZHAO SONGHE ; AN RAN ; CHEN ANG ; YIN YUE ; ZHOU LINJIE ; ZHAO HONGFENG ; YIN JIAN ; IKEZAWA AKIRA ; LIU JINQI ; LU DAOMING ; YUAN WENQIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115952448A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LI SICEN</creatorcontrib><creatorcontrib>LEI TINGZHEN</creatorcontrib><creatorcontrib>FAN QIHONG</creatorcontrib><creatorcontrib>DONG HAIBIN</creatorcontrib><creatorcontrib>LI JINZE</creatorcontrib><creatorcontrib>ZHAO XIN</creatorcontrib><creatorcontrib>JIAO QIULIANG</creatorcontrib><creatorcontrib>LIU XU</creatorcontrib><creatorcontrib>ZHAO SONGHE</creatorcontrib><creatorcontrib>AN RAN</creatorcontrib><creatorcontrib>CHEN ANG</creatorcontrib><creatorcontrib>YIN YUE</creatorcontrib><creatorcontrib>ZHOU LINJIE</creatorcontrib><creatorcontrib>ZHAO HONGFENG</creatorcontrib><creatorcontrib>YIN JIAN</creatorcontrib><creatorcontrib>IKEZAWA AKIRA</creatorcontrib><creatorcontrib>LIU JINQI</creatorcontrib><creatorcontrib>LU DAOMING</creatorcontrib><creatorcontrib>YUAN WENQIANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI SICEN</au><au>LEI TINGZHEN</au><au>FAN QIHONG</au><au>DONG HAIBIN</au><au>LI JINZE</au><au>ZHAO XIN</au><au>JIAO QIULIANG</au><au>LIU XU</au><au>ZHAO SONGHE</au><au>AN RAN</au><au>CHEN ANG</au><au>YIN YUE</au><au>ZHOU LINJIE</au><au>ZHAO HONGFENG</au><au>YIN JIAN</au><au>IKEZAWA AKIRA</au><au>LIU JINQI</au><au>LU DAOMING</au><au>YUAN WENQIANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Distribution area line loss prediction method based on support vector machine</title><date>2023-04-11</date><risdate>2023</risdate><abstract>The invention relates to a transformer area line loss prediction method based on a support vector machine, and the method comprises the following steps: 1, determining indexes which may influence the line loss according to the existing line loss rate data, and determining a training set and a test set which are needed by the support vector machine; step 2, constructing a transformer area line loss prediction model based on the training set data obtained in the step 1, and training the transformer area line loss prediction model to obtain a trained transformer area line loss prediction model; and step 3, obtaining a transformer area line loss prediction result based on the transformer area line loss prediction model trained in the step 2. The technical problems that a traditional method is large in calculation amount and poor in generalization can be solved.
本发明涉及一种基于支持向量机的台区线损预测方法,包括以下步骤:步骤1、根据现有的线损率数据确定可能影响线损的指标,并确定支持向量机所需的训练集和测试集;步骤2、基于步骤1得到的训练集数据,构建台区线损预测模型,并对其进行训练,得到训练好的台区线损预测模型;步骤3、基于步骤2训练好的台区线损预测模型,得到台区</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115952448A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Distribution area line loss prediction method based on support vector machine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A54%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20SICEN&rft.date=2023-04-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115952448A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |