Lymph node metastasis detection method and device for pathological image, equipment and storage medium

The invention belongs to the technical field of image processing, and discloses a lymph node metastasis detection method and device for a pathological image, equipment and a storage medium, and the method comprises the steps: carrying out the image segmentation of the pathological image through a pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG XUEYUAN, WANG XIAOWEN, ZHANG BAICHUAN, DOU JINJIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG XUEYUAN
WANG XIAOWEN
ZHANG BAICHUAN
DOU JINJIN
description The invention belongs to the technical field of image processing, and discloses a lymph node metastasis detection method and device for a pathological image, equipment and a storage medium, and the method comprises the steps: carrying out the image segmentation of the pathological image through a pre-trained segmentation model, obtaining a prediction image, determining a metastatic focus region with the maximum area in the prediction image, and obtaining a prediction result; taking the maximum side length of the minimum enclosing rectangle of the transfer focus area as the longest diameter, and determining a transfer detection result of the pathological image based on the longest diameter; wherein the segmentation model comprises a coding layer and a decoding layer which are connected in sequence, the coding layer comprises a feature extraction layer and a spatial pyramid pooling layer which are connected in sequence, the feature extraction layer comprises a cavity convolution layer and a depth separable conv
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115937090A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115937090A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115937090A3</originalsourceid><addsrcrecordid>eNqNy8EKwjAQBNBcPIj6D-tdoaWI9FiK4kE8eS9Lsm0XkmxsUsG_N4ofIAwMPGaWqr--XBjBiyFwlDDmcARDiXRi8R8cxQB6k_HJmqCXCQJmtTKwRgvscKAd0GPm4Min7zgmmTLnv-HZrdWiRxtp8-uV2p5P9_aypyAdxYCaPKWuvZXloa6ORV001T-bN4NyP7I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Lymph node metastasis detection method and device for pathological image, equipment and storage medium</title><source>esp@cenet</source><creator>ZHANG XUEYUAN ; WANG XIAOWEN ; ZHANG BAICHUAN ; DOU JINJIN</creator><creatorcontrib>ZHANG XUEYUAN ; WANG XIAOWEN ; ZHANG BAICHUAN ; DOU JINJIN</creatorcontrib><description>The invention belongs to the technical field of image processing, and discloses a lymph node metastasis detection method and device for a pathological image, equipment and a storage medium, and the method comprises the steps: carrying out the image segmentation of the pathological image through a pre-trained segmentation model, obtaining a prediction image, determining a metastatic focus region with the maximum area in the prediction image, and obtaining a prediction result; taking the maximum side length of the minimum enclosing rectangle of the transfer focus area as the longest diameter, and determining a transfer detection result of the pathological image based on the longest diameter; wherein the segmentation model comprises a coding layer and a decoding layer which are connected in sequence, the coding layer comprises a feature extraction layer and a spatial pyramid pooling layer which are connected in sequence, the feature extraction layer comprises a cavity convolution layer and a depth separable conv</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230407&amp;DB=EPODOC&amp;CC=CN&amp;NR=115937090A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230407&amp;DB=EPODOC&amp;CC=CN&amp;NR=115937090A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG XUEYUAN</creatorcontrib><creatorcontrib>WANG XIAOWEN</creatorcontrib><creatorcontrib>ZHANG BAICHUAN</creatorcontrib><creatorcontrib>DOU JINJIN</creatorcontrib><title>Lymph node metastasis detection method and device for pathological image, equipment and storage medium</title><description>The invention belongs to the technical field of image processing, and discloses a lymph node metastasis detection method and device for a pathological image, equipment and a storage medium, and the method comprises the steps: carrying out the image segmentation of the pathological image through a pre-trained segmentation model, obtaining a prediction image, determining a metastatic focus region with the maximum area in the prediction image, and obtaining a prediction result; taking the maximum side length of the minimum enclosing rectangle of the transfer focus area as the longest diameter, and determining a transfer detection result of the pathological image based on the longest diameter; wherein the segmentation model comprises a coding layer and a decoding layer which are connected in sequence, the coding layer comprises a feature extraction layer and a spatial pyramid pooling layer which are connected in sequence, the feature extraction layer comprises a cavity convolution layer and a depth separable conv</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy8EKwjAQBNBcPIj6D-tdoaWI9FiK4kE8eS9Lsm0XkmxsUsG_N4ofIAwMPGaWqr--XBjBiyFwlDDmcARDiXRi8R8cxQB6k_HJmqCXCQJmtTKwRgvscKAd0GPm4Min7zgmmTLnv-HZrdWiRxtp8-uV2p5P9_aypyAdxYCaPKWuvZXloa6ORV001T-bN4NyP7I</recordid><startdate>20230407</startdate><enddate>20230407</enddate><creator>ZHANG XUEYUAN</creator><creator>WANG XIAOWEN</creator><creator>ZHANG BAICHUAN</creator><creator>DOU JINJIN</creator><scope>EVB</scope></search><sort><creationdate>20230407</creationdate><title>Lymph node metastasis detection method and device for pathological image, equipment and storage medium</title><author>ZHANG XUEYUAN ; WANG XIAOWEN ; ZHANG BAICHUAN ; DOU JINJIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115937090A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG XUEYUAN</creatorcontrib><creatorcontrib>WANG XIAOWEN</creatorcontrib><creatorcontrib>ZHANG BAICHUAN</creatorcontrib><creatorcontrib>DOU JINJIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG XUEYUAN</au><au>WANG XIAOWEN</au><au>ZHANG BAICHUAN</au><au>DOU JINJIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Lymph node metastasis detection method and device for pathological image, equipment and storage medium</title><date>2023-04-07</date><risdate>2023</risdate><abstract>The invention belongs to the technical field of image processing, and discloses a lymph node metastasis detection method and device for a pathological image, equipment and a storage medium, and the method comprises the steps: carrying out the image segmentation of the pathological image through a pre-trained segmentation model, obtaining a prediction image, determining a metastatic focus region with the maximum area in the prediction image, and obtaining a prediction result; taking the maximum side length of the minimum enclosing rectangle of the transfer focus area as the longest diameter, and determining a transfer detection result of the pathological image based on the longest diameter; wherein the segmentation model comprises a coding layer and a decoding layer which are connected in sequence, the coding layer comprises a feature extraction layer and a spatial pyramid pooling layer which are connected in sequence, the feature extraction layer comprises a cavity convolution layer and a depth separable conv</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115937090A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Lymph node metastasis detection method and device for pathological image, equipment and storage medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A52%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20XUEYUAN&rft.date=2023-04-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115937090A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true