Optimization method of adaptive differential evolution algorithm for passive radar station distribution

The invention discloses an optimization method of an adaptive differential evolution algorithm for passive radar station arrangement. Establishing a passive time difference station distribution simulation scene; 2, initializing a population; 3, calculating a fitness value; step 4, genetic manipulati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG ZHAO, RONG YAN, LI PENG, LIU GAOGAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG ZHAO
RONG YAN
LI PENG
LIU GAOGAO
description The invention discloses an optimization method of an adaptive differential evolution algorithm for passive radar station arrangement. Establishing a passive time difference station distribution simulation scene; 2, initializing a population; 3, calculating a fitness value; step 4, genetic manipulation; according to the method, on one hand, the differential evolution algorithm can solve the problems of many variable parameters and complex parameter setting of the particle swarm algorithm, and the iteration times, the fitness value and the weight factors are fused in the aspect of parameter generation, so that the search and convergence of the algorithm are more reasonable; the influence of the communication distance between the station address error, the time difference error and the observation stations on the station distribution result is considered, so that the modeling process is more realistic. 本发明公开了一种自适应差分进化算法用于无源雷达布站的优化方法,包括以下步骤;建立无源时差布站仿真场景;步骤2:种群的初始化;步骤3:适应度值计算;步骤4:遗传操作;本发明一方面是差分进化算法可以解决粒子群算法可变参数多,参
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115935709A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115935709A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115935709A3</originalsourceid><addsrcrecordid>eNqNjDEOgkAQRWksjHqH8QAmEkIMJSEaK23syejOwiS7zGZ3pPD0InoAq1-89_4y665B2fMLlWUAT9qLAbGABicwEhi2liINyuiARnHP2UTXSWTtPViJEDCljxynLELS75vhpJHvc7DOFhZdos1vV9n2dLw15x0FaSkFfNBA2jaXPC-rojzsq7r4x3kDealBcA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Optimization method of adaptive differential evolution algorithm for passive radar station distribution</title><source>esp@cenet</source><creator>WANG ZHAO ; RONG YAN ; LI PENG ; LIU GAOGAO</creator><creatorcontrib>WANG ZHAO ; RONG YAN ; LI PENG ; LIU GAOGAO</creatorcontrib><description>The invention discloses an optimization method of an adaptive differential evolution algorithm for passive radar station arrangement. Establishing a passive time difference station distribution simulation scene; 2, initializing a population; 3, calculating a fitness value; step 4, genetic manipulation; according to the method, on one hand, the differential evolution algorithm can solve the problems of many variable parameters and complex parameter setting of the particle swarm algorithm, and the iteration times, the fitness value and the weight factors are fused in the aspect of parameter generation, so that the search and convergence of the algorithm are more reasonable; the influence of the communication distance between the station address error, the time difference error and the observation stations on the station distribution result is considered, so that the modeling process is more realistic. 本发明公开了一种自适应差分进化算法用于无源雷达布站的优化方法,包括以下步骤;建立无源时差布站仿真场景;步骤2:种群的初始化;步骤3:适应度值计算;步骤4:遗传操作;本发明一方面是差分进化算法可以解决粒子群算法可变参数多,参</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230407&amp;DB=EPODOC&amp;CC=CN&amp;NR=115935709A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230407&amp;DB=EPODOC&amp;CC=CN&amp;NR=115935709A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG ZHAO</creatorcontrib><creatorcontrib>RONG YAN</creatorcontrib><creatorcontrib>LI PENG</creatorcontrib><creatorcontrib>LIU GAOGAO</creatorcontrib><title>Optimization method of adaptive differential evolution algorithm for passive radar station distribution</title><description>The invention discloses an optimization method of an adaptive differential evolution algorithm for passive radar station arrangement. Establishing a passive time difference station distribution simulation scene; 2, initializing a population; 3, calculating a fitness value; step 4, genetic manipulation; according to the method, on one hand, the differential evolution algorithm can solve the problems of many variable parameters and complex parameter setting of the particle swarm algorithm, and the iteration times, the fitness value and the weight factors are fused in the aspect of parameter generation, so that the search and convergence of the algorithm are more reasonable; the influence of the communication distance between the station address error, the time difference error and the observation stations on the station distribution result is considered, so that the modeling process is more realistic. 本发明公开了一种自适应差分进化算法用于无源雷达布站的优化方法,包括以下步骤;建立无源时差布站仿真场景;步骤2:种群的初始化;步骤3:适应度值计算;步骤4:遗传操作;本发明一方面是差分进化算法可以解决粒子群算法可变参数多,参</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEOgkAQRWksjHqH8QAmEkIMJSEaK23syejOwiS7zGZ3pPD0InoAq1-89_4y665B2fMLlWUAT9qLAbGABicwEhi2liINyuiARnHP2UTXSWTtPViJEDCljxynLELS75vhpJHvc7DOFhZdos1vV9n2dLw15x0FaSkFfNBA2jaXPC-rojzsq7r4x3kDealBcA</recordid><startdate>20230407</startdate><enddate>20230407</enddate><creator>WANG ZHAO</creator><creator>RONG YAN</creator><creator>LI PENG</creator><creator>LIU GAOGAO</creator><scope>EVB</scope></search><sort><creationdate>20230407</creationdate><title>Optimization method of adaptive differential evolution algorithm for passive radar station distribution</title><author>WANG ZHAO ; RONG YAN ; LI PENG ; LIU GAOGAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115935709A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG ZHAO</creatorcontrib><creatorcontrib>RONG YAN</creatorcontrib><creatorcontrib>LI PENG</creatorcontrib><creatorcontrib>LIU GAOGAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG ZHAO</au><au>RONG YAN</au><au>LI PENG</au><au>LIU GAOGAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Optimization method of adaptive differential evolution algorithm for passive radar station distribution</title><date>2023-04-07</date><risdate>2023</risdate><abstract>The invention discloses an optimization method of an adaptive differential evolution algorithm for passive radar station arrangement. Establishing a passive time difference station distribution simulation scene; 2, initializing a population; 3, calculating a fitness value; step 4, genetic manipulation; according to the method, on one hand, the differential evolution algorithm can solve the problems of many variable parameters and complex parameter setting of the particle swarm algorithm, and the iteration times, the fitness value and the weight factors are fused in the aspect of parameter generation, so that the search and convergence of the algorithm are more reasonable; the influence of the communication distance between the station address error, the time difference error and the observation stations on the station distribution result is considered, so that the modeling process is more realistic. 本发明公开了一种自适应差分进化算法用于无源雷达布站的优化方法,包括以下步骤;建立无源时差布站仿真场景;步骤2:种群的初始化;步骤3:适应度值计算;步骤4:遗传操作;本发明一方面是差分进化算法可以解决粒子群算法可变参数多,参</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115935709A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Optimization method of adaptive differential evolution algorithm for passive radar station distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A41%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20ZHAO&rft.date=2023-04-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115935709A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true