Content recognition method and device based on double-attention neural network

The invention provides a content identification method and device based on a double-attention neural network, and the method comprises the steps: obtaining a communication operator corpus, generating a corresponding class label description for each class label through employing an automatic class la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MA XIAOLIANG, OU CHUNXUE, ZHAO BOWEN, HUANG SHUCHAN, AN LING-LING, DU DEQUAN, LUO MUJUN, SONG CANHUI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MA XIAOLIANG
OU CHUNXUE
ZHAO BOWEN
HUANG SHUCHAN
AN LING-LING
DU DEQUAN
LUO MUJUN
SONG CANHUI
description The invention provides a content identification method and device based on a double-attention neural network, and the method comprises the steps: obtaining a communication operator corpus, generating a corresponding class label description for each class label through employing an automatic class label description generation mode, calculating a corresponding relation between text words and category labels in a corpus of a communication operator to obtain a label representation matrix; the method comprises the following steps: preprocessing work order information of a communication operator by using a text encoder to obtain preprocessed text representation; inputting the preprocessed text representation into a self-attention mechanism network to obtain a self-attention text representation; inputting the preprocessed text representation into a label attention neural network to obtain a label attention text representation; processing the self-attention text representation and the label attention text representat
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115934935A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115934935A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115934935A3</originalsourceid><addsrcrecordid>eNrjZPBzzs8rSc0rUShKTc5Pz8ssyczPU8hNLcnIT1FIzEtRSEkty0xOVUhKLE5NUQBKpeSXJuWk6iaWgDSB1OallhYl5gCpkvL8omweBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnApUGe_sZ2hoamlsYmls6mhMjBoAPk828A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Content recognition method and device based on double-attention neural network</title><source>esp@cenet</source><creator>MA XIAOLIANG ; OU CHUNXUE ; ZHAO BOWEN ; HUANG SHUCHAN ; AN LING-LING ; DU DEQUAN ; LUO MUJUN ; SONG CANHUI</creator><creatorcontrib>MA XIAOLIANG ; OU CHUNXUE ; ZHAO BOWEN ; HUANG SHUCHAN ; AN LING-LING ; DU DEQUAN ; LUO MUJUN ; SONG CANHUI</creatorcontrib><description>The invention provides a content identification method and device based on a double-attention neural network, and the method comprises the steps: obtaining a communication operator corpus, generating a corresponding class label description for each class label through employing an automatic class label description generation mode, calculating a corresponding relation between text words and category labels in a corpus of a communication operator to obtain a label representation matrix; the method comprises the following steps: preprocessing work order information of a communication operator by using a text encoder to obtain preprocessed text representation; inputting the preprocessed text representation into a self-attention mechanism network to obtain a self-attention text representation; inputting the preprocessed text representation into a label attention neural network to obtain a label attention text representation; processing the self-attention text representation and the label attention text representat</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230407&amp;DB=EPODOC&amp;CC=CN&amp;NR=115934935A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230407&amp;DB=EPODOC&amp;CC=CN&amp;NR=115934935A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MA XIAOLIANG</creatorcontrib><creatorcontrib>OU CHUNXUE</creatorcontrib><creatorcontrib>ZHAO BOWEN</creatorcontrib><creatorcontrib>HUANG SHUCHAN</creatorcontrib><creatorcontrib>AN LING-LING</creatorcontrib><creatorcontrib>DU DEQUAN</creatorcontrib><creatorcontrib>LUO MUJUN</creatorcontrib><creatorcontrib>SONG CANHUI</creatorcontrib><title>Content recognition method and device based on double-attention neural network</title><description>The invention provides a content identification method and device based on a double-attention neural network, and the method comprises the steps: obtaining a communication operator corpus, generating a corresponding class label description for each class label through employing an automatic class label description generation mode, calculating a corresponding relation between text words and category labels in a corpus of a communication operator to obtain a label representation matrix; the method comprises the following steps: preprocessing work order information of a communication operator by using a text encoder to obtain preprocessed text representation; inputting the preprocessed text representation into a self-attention mechanism network to obtain a self-attention text representation; inputting the preprocessed text representation into a label attention neural network to obtain a label attention text representation; processing the self-attention text representation and the label attention text representat</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPBzzs8rSc0rUShKTc5Pz8ssyczPU8hNLcnIT1FIzEtRSEkty0xOVUhKLE5NUQBKpeSXJuWk6iaWgDSB1OallhYl5gCpkvL8omweBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnApUGe_sZ2hoamlsYmls6mhMjBoAPk828A</recordid><startdate>20230407</startdate><enddate>20230407</enddate><creator>MA XIAOLIANG</creator><creator>OU CHUNXUE</creator><creator>ZHAO BOWEN</creator><creator>HUANG SHUCHAN</creator><creator>AN LING-LING</creator><creator>DU DEQUAN</creator><creator>LUO MUJUN</creator><creator>SONG CANHUI</creator><scope>EVB</scope></search><sort><creationdate>20230407</creationdate><title>Content recognition method and device based on double-attention neural network</title><author>MA XIAOLIANG ; OU CHUNXUE ; ZHAO BOWEN ; HUANG SHUCHAN ; AN LING-LING ; DU DEQUAN ; LUO MUJUN ; SONG CANHUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115934935A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>MA XIAOLIANG</creatorcontrib><creatorcontrib>OU CHUNXUE</creatorcontrib><creatorcontrib>ZHAO BOWEN</creatorcontrib><creatorcontrib>HUANG SHUCHAN</creatorcontrib><creatorcontrib>AN LING-LING</creatorcontrib><creatorcontrib>DU DEQUAN</creatorcontrib><creatorcontrib>LUO MUJUN</creatorcontrib><creatorcontrib>SONG CANHUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MA XIAOLIANG</au><au>OU CHUNXUE</au><au>ZHAO BOWEN</au><au>HUANG SHUCHAN</au><au>AN LING-LING</au><au>DU DEQUAN</au><au>LUO MUJUN</au><au>SONG CANHUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Content recognition method and device based on double-attention neural network</title><date>2023-04-07</date><risdate>2023</risdate><abstract>The invention provides a content identification method and device based on a double-attention neural network, and the method comprises the steps: obtaining a communication operator corpus, generating a corresponding class label description for each class label through employing an automatic class label description generation mode, calculating a corresponding relation between text words and category labels in a corpus of a communication operator to obtain a label representation matrix; the method comprises the following steps: preprocessing work order information of a communication operator by using a text encoder to obtain preprocessed text representation; inputting the preprocessed text representation into a self-attention mechanism network to obtain a self-attention text representation; inputting the preprocessed text representation into a label attention neural network to obtain a label attention text representation; processing the self-attention text representation and the label attention text representat</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115934935A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Content recognition method and device based on double-attention neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A30%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MA%20XIAOLIANG&rft.date=2023-04-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115934935A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true