Content recognition method and device based on double-attention neural network
The invention provides a content identification method and device based on a double-attention neural network, and the method comprises the steps: obtaining a communication operator corpus, generating a corresponding class label description for each class label through employing an automatic class la...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | MA XIAOLIANG OU CHUNXUE ZHAO BOWEN HUANG SHUCHAN AN LING-LING DU DEQUAN LUO MUJUN SONG CANHUI |
description | The invention provides a content identification method and device based on a double-attention neural network, and the method comprises the steps: obtaining a communication operator corpus, generating a corresponding class label description for each class label through employing an automatic class label description generation mode, calculating a corresponding relation between text words and category labels in a corpus of a communication operator to obtain a label representation matrix; the method comprises the following steps: preprocessing work order information of a communication operator by using a text encoder to obtain preprocessed text representation; inputting the preprocessed text representation into a self-attention mechanism network to obtain a self-attention text representation; inputting the preprocessed text representation into a label attention neural network to obtain a label attention text representation; processing the self-attention text representation and the label attention text representat |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115934935A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115934935A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115934935A3</originalsourceid><addsrcrecordid>eNrjZPBzzs8rSc0rUShKTc5Pz8ssyczPU8hNLcnIT1FIzEtRSEkty0xOVUhKLE5NUQBKpeSXJuWk6iaWgDSB1OallhYl5gCpkvL8omweBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnApUGe_sZ2hoamlsYmls6mhMjBoAPk828A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Content recognition method and device based on double-attention neural network</title><source>esp@cenet</source><creator>MA XIAOLIANG ; OU CHUNXUE ; ZHAO BOWEN ; HUANG SHUCHAN ; AN LING-LING ; DU DEQUAN ; LUO MUJUN ; SONG CANHUI</creator><creatorcontrib>MA XIAOLIANG ; OU CHUNXUE ; ZHAO BOWEN ; HUANG SHUCHAN ; AN LING-LING ; DU DEQUAN ; LUO MUJUN ; SONG CANHUI</creatorcontrib><description>The invention provides a content identification method and device based on a double-attention neural network, and the method comprises the steps: obtaining a communication operator corpus, generating a corresponding class label description for each class label through employing an automatic class label description generation mode, calculating a corresponding relation between text words and category labels in a corpus of a communication operator to obtain a label representation matrix; the method comprises the following steps: preprocessing work order information of a communication operator by using a text encoder to obtain preprocessed text representation; inputting the preprocessed text representation into a self-attention mechanism network to obtain a self-attention text representation; inputting the preprocessed text representation into a label attention neural network to obtain a label attention text representation; processing the self-attention text representation and the label attention text representat</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230407&DB=EPODOC&CC=CN&NR=115934935A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230407&DB=EPODOC&CC=CN&NR=115934935A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MA XIAOLIANG</creatorcontrib><creatorcontrib>OU CHUNXUE</creatorcontrib><creatorcontrib>ZHAO BOWEN</creatorcontrib><creatorcontrib>HUANG SHUCHAN</creatorcontrib><creatorcontrib>AN LING-LING</creatorcontrib><creatorcontrib>DU DEQUAN</creatorcontrib><creatorcontrib>LUO MUJUN</creatorcontrib><creatorcontrib>SONG CANHUI</creatorcontrib><title>Content recognition method and device based on double-attention neural network</title><description>The invention provides a content identification method and device based on a double-attention neural network, and the method comprises the steps: obtaining a communication operator corpus, generating a corresponding class label description for each class label through employing an automatic class label description generation mode, calculating a corresponding relation between text words and category labels in a corpus of a communication operator to obtain a label representation matrix; the method comprises the following steps: preprocessing work order information of a communication operator by using a text encoder to obtain preprocessed text representation; inputting the preprocessed text representation into a self-attention mechanism network to obtain a self-attention text representation; inputting the preprocessed text representation into a label attention neural network to obtain a label attention text representation; processing the self-attention text representation and the label attention text representat</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPBzzs8rSc0rUShKTc5Pz8ssyczPU8hNLcnIT1FIzEtRSEkty0xOVUhKLE5NUQBKpeSXJuWk6iaWgDSB1OallhYl5gCpkvL8omweBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnApUGe_sZ2hoamlsYmls6mhMjBoAPk828A</recordid><startdate>20230407</startdate><enddate>20230407</enddate><creator>MA XIAOLIANG</creator><creator>OU CHUNXUE</creator><creator>ZHAO BOWEN</creator><creator>HUANG SHUCHAN</creator><creator>AN LING-LING</creator><creator>DU DEQUAN</creator><creator>LUO MUJUN</creator><creator>SONG CANHUI</creator><scope>EVB</scope></search><sort><creationdate>20230407</creationdate><title>Content recognition method and device based on double-attention neural network</title><author>MA XIAOLIANG ; OU CHUNXUE ; ZHAO BOWEN ; HUANG SHUCHAN ; AN LING-LING ; DU DEQUAN ; LUO MUJUN ; SONG CANHUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115934935A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>MA XIAOLIANG</creatorcontrib><creatorcontrib>OU CHUNXUE</creatorcontrib><creatorcontrib>ZHAO BOWEN</creatorcontrib><creatorcontrib>HUANG SHUCHAN</creatorcontrib><creatorcontrib>AN LING-LING</creatorcontrib><creatorcontrib>DU DEQUAN</creatorcontrib><creatorcontrib>LUO MUJUN</creatorcontrib><creatorcontrib>SONG CANHUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MA XIAOLIANG</au><au>OU CHUNXUE</au><au>ZHAO BOWEN</au><au>HUANG SHUCHAN</au><au>AN LING-LING</au><au>DU DEQUAN</au><au>LUO MUJUN</au><au>SONG CANHUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Content recognition method and device based on double-attention neural network</title><date>2023-04-07</date><risdate>2023</risdate><abstract>The invention provides a content identification method and device based on a double-attention neural network, and the method comprises the steps: obtaining a communication operator corpus, generating a corresponding class label description for each class label through employing an automatic class label description generation mode, calculating a corresponding relation between text words and category labels in a corpus of a communication operator to obtain a label representation matrix; the method comprises the following steps: preprocessing work order information of a communication operator by using a text encoder to obtain preprocessed text representation; inputting the preprocessed text representation into a self-attention mechanism network to obtain a self-attention text representation; inputting the preprocessed text representation into a label attention neural network to obtain a label attention text representation; processing the self-attention text representation and the label attention text representat</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115934935A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Content recognition method and device based on double-attention neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A30%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MA%20XIAOLIANG&rft.date=2023-04-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115934935A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |