Cross-modal feature fusion and asymptotic decoding saliency target detection method and device

The invention discloses a saliency target detection method and device based on cross-modal feature fusion and asymptotic decoding. The method comprises the following steps of: extracting multi-level and multi-scale RGB (Red, Green, Blue) features and depth features from an image to be detected throu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HU XIHANG, WANG FASHENG, SUN FUMING, LI HAOJIE, SUN JING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HU XIHANG
WANG FASHENG
SUN FUMING
LI HAOJIE
SUN JING
description The invention discloses a saliency target detection method and device based on cross-modal feature fusion and asymptotic decoding. The method comprises the following steps of: extracting multi-level and multi-scale RGB (Red, Green, Blue) features and depth features from an image to be detected through a double-flow SwinTransform encoder; fusing the multi-level and multi-scale RGB features and the depth features through a cross-modal attention fusion module to obtain fused features; decoding high-level fusion features in the fusion features through a progressive fusion decoder, and fusing low-level features step by step in the decoding process; the problems that in the prior art, an additional feature enhancement or edge generation module needs to be added to achieve the most advanced effect, feature redundancy and computing resource waste are inevitably caused, and meanwhile further development of significance target detection model design is limited are solved. 本发明公开一种跨模态特征融合及渐近解码的显著性目标检测方法及装置。本发明通过双流SwinTra
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115908789A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115908789A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115908789A3</originalsourceid><addsrcrecordid>eNqNi70KwkAQBtNYiPoO6wMEDCImpQTFysrasNx9SQ6S25DdCHl7f_ABrKaYmWXyKEdRTXvx3FENtmkE1ZMGicTRE-vcDyYWHHk48SE2pNwFRDeT8djA3sLg7HP0sFb8d_R4Bod1sqi5U2x-XCXby_leXlMMUkEHdoiwqrxl2aHY5ce8OO3_aV5xbz0I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Cross-modal feature fusion and asymptotic decoding saliency target detection method and device</title><source>esp@cenet</source><creator>HU XIHANG ; WANG FASHENG ; SUN FUMING ; LI HAOJIE ; SUN JING</creator><creatorcontrib>HU XIHANG ; WANG FASHENG ; SUN FUMING ; LI HAOJIE ; SUN JING</creatorcontrib><description>The invention discloses a saliency target detection method and device based on cross-modal feature fusion and asymptotic decoding. The method comprises the following steps of: extracting multi-level and multi-scale RGB (Red, Green, Blue) features and depth features from an image to be detected through a double-flow SwinTransform encoder; fusing the multi-level and multi-scale RGB features and the depth features through a cross-modal attention fusion module to obtain fused features; decoding high-level fusion features in the fusion features through a progressive fusion decoder, and fusing low-level features step by step in the decoding process; the problems that in the prior art, an additional feature enhancement or edge generation module needs to be added to achieve the most advanced effect, feature redundancy and computing resource waste are inevitably caused, and meanwhile further development of significance target detection model design is limited are solved. 本发明公开一种跨模态特征融合及渐近解码的显著性目标检测方法及装置。本发明通过双流SwinTra</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230404&amp;DB=EPODOC&amp;CC=CN&amp;NR=115908789A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230404&amp;DB=EPODOC&amp;CC=CN&amp;NR=115908789A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HU XIHANG</creatorcontrib><creatorcontrib>WANG FASHENG</creatorcontrib><creatorcontrib>SUN FUMING</creatorcontrib><creatorcontrib>LI HAOJIE</creatorcontrib><creatorcontrib>SUN JING</creatorcontrib><title>Cross-modal feature fusion and asymptotic decoding saliency target detection method and device</title><description>The invention discloses a saliency target detection method and device based on cross-modal feature fusion and asymptotic decoding. The method comprises the following steps of: extracting multi-level and multi-scale RGB (Red, Green, Blue) features and depth features from an image to be detected through a double-flow SwinTransform encoder; fusing the multi-level and multi-scale RGB features and the depth features through a cross-modal attention fusion module to obtain fused features; decoding high-level fusion features in the fusion features through a progressive fusion decoder, and fusing low-level features step by step in the decoding process; the problems that in the prior art, an additional feature enhancement or edge generation module needs to be added to achieve the most advanced effect, feature redundancy and computing resource waste are inevitably caused, and meanwhile further development of significance target detection model design is limited are solved. 本发明公开一种跨模态特征融合及渐近解码的显著性目标检测方法及装置。本发明通过双流SwinTra</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi70KwkAQBtNYiPoO6wMEDCImpQTFysrasNx9SQ6S25DdCHl7f_ABrKaYmWXyKEdRTXvx3FENtmkE1ZMGicTRE-vcDyYWHHk48SE2pNwFRDeT8djA3sLg7HP0sFb8d_R4Bod1sqi5U2x-XCXby_leXlMMUkEHdoiwqrxl2aHY5ce8OO3_aV5xbz0I</recordid><startdate>20230404</startdate><enddate>20230404</enddate><creator>HU XIHANG</creator><creator>WANG FASHENG</creator><creator>SUN FUMING</creator><creator>LI HAOJIE</creator><creator>SUN JING</creator><scope>EVB</scope></search><sort><creationdate>20230404</creationdate><title>Cross-modal feature fusion and asymptotic decoding saliency target detection method and device</title><author>HU XIHANG ; WANG FASHENG ; SUN FUMING ; LI HAOJIE ; SUN JING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115908789A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>HU XIHANG</creatorcontrib><creatorcontrib>WANG FASHENG</creatorcontrib><creatorcontrib>SUN FUMING</creatorcontrib><creatorcontrib>LI HAOJIE</creatorcontrib><creatorcontrib>SUN JING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HU XIHANG</au><au>WANG FASHENG</au><au>SUN FUMING</au><au>LI HAOJIE</au><au>SUN JING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Cross-modal feature fusion and asymptotic decoding saliency target detection method and device</title><date>2023-04-04</date><risdate>2023</risdate><abstract>The invention discloses a saliency target detection method and device based on cross-modal feature fusion and asymptotic decoding. The method comprises the following steps of: extracting multi-level and multi-scale RGB (Red, Green, Blue) features and depth features from an image to be detected through a double-flow SwinTransform encoder; fusing the multi-level and multi-scale RGB features and the depth features through a cross-modal attention fusion module to obtain fused features; decoding high-level fusion features in the fusion features through a progressive fusion decoder, and fusing low-level features step by step in the decoding process; the problems that in the prior art, an additional feature enhancement or edge generation module needs to be added to achieve the most advanced effect, feature redundancy and computing resource waste are inevitably caused, and meanwhile further development of significance target detection model design is limited are solved. 本发明公开一种跨模态特征融合及渐近解码的显著性目标检测方法及装置。本发明通过双流SwinTra</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115908789A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Cross-modal feature fusion and asymptotic decoding saliency target detection method and device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A54%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HU%20XIHANG&rft.date=2023-04-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115908789A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true