Prediction method and system for national ecological environment information visualization based on PredRNN

The invention discloses a PredRNN-based nationwide ecological environment information visualization prediction method and system, and the method comprises the steps: embedding a PredRNN deep learning model in a prediction function of a visualization system, introducing the induction deviation of gro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SHI HAOYUAN, TU LIJING, BIAN JINGE, ZHANG YANCONG, TAO ZHENG, ZHAO DEHAN, WU GUODONG, ZHANG NENGXIANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SHI HAOYUAN
TU LIJING
BIAN JINGE
ZHANG YANCONG
TAO ZHENG
ZHAO DEHAN
WU GUODONG
ZHANG NENGXIANG
description The invention discloses a PredRNN-based nationwide ecological environment information visualization prediction method and system, and the method comprises the steps: embedding a PredRNN deep learning model in a prediction function of a visualization system, introducing the induction deviation of group invariance in space into space-time prediction through employing a convolution layer, and carrying out the prediction of the prediction function. The method has higher modeling capability and higher calculation efficiency for the historical observation sequence. Real-time ecological environment data are obtained through a web crawler technology, the data are processed and then enter a PredRNN prediction model for prediction, a visualization tool is called through static resources, a main page is constructed, service and request are responded based on a cloud server side, and the data are obtained and visually displayed. And finally obtained visual data can be used for query of the majority of users. 本发明公开了一种基于Pr
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115907148A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115907148A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115907148A3</originalsourceid><addsrcrecordid>eNqNjUEKwkAQBHPxIOofxgcIBhXjUYLiKYh4D-PuRAd3Z0J2DejrTdQHeOpquqCHyf3YkGUTWQU8xZtaQLEQniGSh0obEOxHdEBGnV7Z9CgtNyqeJAJLZ_mPBC2HBzp-fdsFA1nooP84FcU4GVToAk1-OUqm-905P8yo1pJCjYaEYpkXabrazNfpMtsu_nHeVQ1CNQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Prediction method and system for national ecological environment information visualization based on PredRNN</title><source>esp@cenet</source><creator>SHI HAOYUAN ; TU LIJING ; BIAN JINGE ; ZHANG YANCONG ; TAO ZHENG ; ZHAO DEHAN ; WU GUODONG ; ZHANG NENGXIANG</creator><creatorcontrib>SHI HAOYUAN ; TU LIJING ; BIAN JINGE ; ZHANG YANCONG ; TAO ZHENG ; ZHAO DEHAN ; WU GUODONG ; ZHANG NENGXIANG</creatorcontrib><description>The invention discloses a PredRNN-based nationwide ecological environment information visualization prediction method and system, and the method comprises the steps: embedding a PredRNN deep learning model in a prediction function of a visualization system, introducing the induction deviation of group invariance in space into space-time prediction through employing a convolution layer, and carrying out the prediction of the prediction function. The method has higher modeling capability and higher calculation efficiency for the historical observation sequence. Real-time ecological environment data are obtained through a web crawler technology, the data are processed and then enter a PredRNN prediction model for prediction, a visualization tool is called through static resources, a main page is constructed, service and request are responded based on a cloud server side, and the data are obtained and visually displayed. And finally obtained visual data can be used for query of the majority of users. 本发明公开了一种基于Pr</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230404&amp;DB=EPODOC&amp;CC=CN&amp;NR=115907148A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230404&amp;DB=EPODOC&amp;CC=CN&amp;NR=115907148A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SHI HAOYUAN</creatorcontrib><creatorcontrib>TU LIJING</creatorcontrib><creatorcontrib>BIAN JINGE</creatorcontrib><creatorcontrib>ZHANG YANCONG</creatorcontrib><creatorcontrib>TAO ZHENG</creatorcontrib><creatorcontrib>ZHAO DEHAN</creatorcontrib><creatorcontrib>WU GUODONG</creatorcontrib><creatorcontrib>ZHANG NENGXIANG</creatorcontrib><title>Prediction method and system for national ecological environment information visualization based on PredRNN</title><description>The invention discloses a PredRNN-based nationwide ecological environment information visualization prediction method and system, and the method comprises the steps: embedding a PredRNN deep learning model in a prediction function of a visualization system, introducing the induction deviation of group invariance in space into space-time prediction through employing a convolution layer, and carrying out the prediction of the prediction function. The method has higher modeling capability and higher calculation efficiency for the historical observation sequence. Real-time ecological environment data are obtained through a web crawler technology, the data are processed and then enter a PredRNN prediction model for prediction, a visualization tool is called through static resources, a main page is constructed, service and request are responded based on a cloud server side, and the data are obtained and visually displayed. And finally obtained visual data can be used for query of the majority of users. 本发明公开了一种基于Pr</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjUEKwkAQBHPxIOofxgcIBhXjUYLiKYh4D-PuRAd3Z0J2DejrTdQHeOpquqCHyf3YkGUTWQU8xZtaQLEQniGSh0obEOxHdEBGnV7Z9CgtNyqeJAJLZ_mPBC2HBzp-fdsFA1nooP84FcU4GVToAk1-OUqm-905P8yo1pJCjYaEYpkXabrazNfpMtsu_nHeVQ1CNQ</recordid><startdate>20230404</startdate><enddate>20230404</enddate><creator>SHI HAOYUAN</creator><creator>TU LIJING</creator><creator>BIAN JINGE</creator><creator>ZHANG YANCONG</creator><creator>TAO ZHENG</creator><creator>ZHAO DEHAN</creator><creator>WU GUODONG</creator><creator>ZHANG NENGXIANG</creator><scope>EVB</scope></search><sort><creationdate>20230404</creationdate><title>Prediction method and system for national ecological environment information visualization based on PredRNN</title><author>SHI HAOYUAN ; TU LIJING ; BIAN JINGE ; ZHANG YANCONG ; TAO ZHENG ; ZHAO DEHAN ; WU GUODONG ; ZHANG NENGXIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115907148A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>SHI HAOYUAN</creatorcontrib><creatorcontrib>TU LIJING</creatorcontrib><creatorcontrib>BIAN JINGE</creatorcontrib><creatorcontrib>ZHANG YANCONG</creatorcontrib><creatorcontrib>TAO ZHENG</creatorcontrib><creatorcontrib>ZHAO DEHAN</creatorcontrib><creatorcontrib>WU GUODONG</creatorcontrib><creatorcontrib>ZHANG NENGXIANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SHI HAOYUAN</au><au>TU LIJING</au><au>BIAN JINGE</au><au>ZHANG YANCONG</au><au>TAO ZHENG</au><au>ZHAO DEHAN</au><au>WU GUODONG</au><au>ZHANG NENGXIANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Prediction method and system for national ecological environment information visualization based on PredRNN</title><date>2023-04-04</date><risdate>2023</risdate><abstract>The invention discloses a PredRNN-based nationwide ecological environment information visualization prediction method and system, and the method comprises the steps: embedding a PredRNN deep learning model in a prediction function of a visualization system, introducing the induction deviation of group invariance in space into space-time prediction through employing a convolution layer, and carrying out the prediction of the prediction function. The method has higher modeling capability and higher calculation efficiency for the historical observation sequence. Real-time ecological environment data are obtained through a web crawler technology, the data are processed and then enter a PredRNN prediction model for prediction, a visualization tool is called through static resources, a main page is constructed, service and request are responded based on a cloud server side, and the data are obtained and visually displayed. And finally obtained visual data can be used for query of the majority of users. 本发明公开了一种基于Pr</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115907148A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Prediction method and system for national ecological environment information visualization based on PredRNN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A18%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SHI%20HAOYUAN&rft.date=2023-04-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115907148A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true