Airspace traffic flow prediction method based on attention space-time diagram convolutional network

The invention discloses an attention space-time diagram convolutional network-based airspace traffic flow prediction method. The method comprises the following steps of: (1) acquiring air traffic flow data and preprocessing the air traffic flow data; step (2), carrying out airspace sector network mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WAN JUNQIANG, GENG SUNYUE, DU JINGHAN, ZHANG HONGHAI, YI JIA
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WAN JUNQIANG
GENG SUNYUE
DU JINGHAN
ZHANG HONGHAI
YI JIA
description The invention discloses an attention space-time diagram convolutional network-based airspace traffic flow prediction method. The method comprises the following steps of: (1) acquiring air traffic flow data and preprocessing the air traffic flow data; step (2), carrying out airspace sector network modeling; (3) constructing an air traffic flow time sequence; step (4), constructing an attention space-time diagram convolutional network; step (5), training the attention space-time diagram convolutional network; step (6), testing the attention space-time diagram convolutional network; aiming at a complex airspace traffic flow prediction problem, the method can simultaneously capture the spatial dependence and the time dependence of the air traffic flow, and has the capability of describing the spatial-temporal characteristics of the air traffic flow, and the attention mechanism can capture the global time dynamic trend of the air traffic flow. The air traffic flow operation rule of a large-range airspace scale can
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115907079A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115907079A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115907079A3</originalsourceid><addsrcrecordid>eNqNjEEKwjAQRbtxIeodxgMUWkRKl6Uorly5L2My0dAkU5LRXt8aPICrz-e9_9eF6mxMEyoCiWiMVWAczzBF0laJ5QCe5Mka7phIw9JRhEImeVeK9QTa4iOiB8Xhze71xeggkMwcx22xMugS7X65Kfbn062_lDTxQPllMYf-WtfHtmqqpu0O_zgf5DY_Lw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Airspace traffic flow prediction method based on attention space-time diagram convolutional network</title><source>esp@cenet</source><creator>WAN JUNQIANG ; GENG SUNYUE ; DU JINGHAN ; ZHANG HONGHAI ; YI JIA</creator><creatorcontrib>WAN JUNQIANG ; GENG SUNYUE ; DU JINGHAN ; ZHANG HONGHAI ; YI JIA</creatorcontrib><description>The invention discloses an attention space-time diagram convolutional network-based airspace traffic flow prediction method. The method comprises the following steps of: (1) acquiring air traffic flow data and preprocessing the air traffic flow data; step (2), carrying out airspace sector network modeling; (3) constructing an air traffic flow time sequence; step (4), constructing an attention space-time diagram convolutional network; step (5), training the attention space-time diagram convolutional network; step (6), testing the attention space-time diagram convolutional network; aiming at a complex airspace traffic flow prediction problem, the method can simultaneously capture the spatial dependence and the time dependence of the air traffic flow, and has the capability of describing the spatial-temporal characteristics of the air traffic flow, and the attention mechanism can capture the global time dynamic trend of the air traffic flow. The air traffic flow operation rule of a large-range airspace scale can</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SIGNALLING ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR ; TRAFFIC CONTROL SYSTEMS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230404&amp;DB=EPODOC&amp;CC=CN&amp;NR=115907079A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230404&amp;DB=EPODOC&amp;CC=CN&amp;NR=115907079A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WAN JUNQIANG</creatorcontrib><creatorcontrib>GENG SUNYUE</creatorcontrib><creatorcontrib>DU JINGHAN</creatorcontrib><creatorcontrib>ZHANG HONGHAI</creatorcontrib><creatorcontrib>YI JIA</creatorcontrib><title>Airspace traffic flow prediction method based on attention space-time diagram convolutional network</title><description>The invention discloses an attention space-time diagram convolutional network-based airspace traffic flow prediction method. The method comprises the following steps of: (1) acquiring air traffic flow data and preprocessing the air traffic flow data; step (2), carrying out airspace sector network modeling; (3) constructing an air traffic flow time sequence; step (4), constructing an attention space-time diagram convolutional network; step (5), training the attention space-time diagram convolutional network; step (6), testing the attention space-time diagram convolutional network; aiming at a complex airspace traffic flow prediction problem, the method can simultaneously capture the spatial dependence and the time dependence of the air traffic flow, and has the capability of describing the spatial-temporal characteristics of the air traffic flow, and the attention mechanism can capture the global time dynamic trend of the air traffic flow. The air traffic flow operation rule of a large-range airspace scale can</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SIGNALLING</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><subject>TRAFFIC CONTROL SYSTEMS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEEKwjAQRbtxIeodxgMUWkRKl6Uorly5L2My0dAkU5LRXt8aPICrz-e9_9eF6mxMEyoCiWiMVWAczzBF0laJ5QCe5Mka7phIw9JRhEImeVeK9QTa4iOiB8Xhze71xeggkMwcx22xMugS7X65Kfbn062_lDTxQPllMYf-WtfHtmqqpu0O_zgf5DY_Lw</recordid><startdate>20230404</startdate><enddate>20230404</enddate><creator>WAN JUNQIANG</creator><creator>GENG SUNYUE</creator><creator>DU JINGHAN</creator><creator>ZHANG HONGHAI</creator><creator>YI JIA</creator><scope>EVB</scope></search><sort><creationdate>20230404</creationdate><title>Airspace traffic flow prediction method based on attention space-time diagram convolutional network</title><author>WAN JUNQIANG ; GENG SUNYUE ; DU JINGHAN ; ZHANG HONGHAI ; YI JIA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115907079A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SIGNALLING</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><topic>TRAFFIC CONTROL SYSTEMS</topic><toplevel>online_resources</toplevel><creatorcontrib>WAN JUNQIANG</creatorcontrib><creatorcontrib>GENG SUNYUE</creatorcontrib><creatorcontrib>DU JINGHAN</creatorcontrib><creatorcontrib>ZHANG HONGHAI</creatorcontrib><creatorcontrib>YI JIA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WAN JUNQIANG</au><au>GENG SUNYUE</au><au>DU JINGHAN</au><au>ZHANG HONGHAI</au><au>YI JIA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Airspace traffic flow prediction method based on attention space-time diagram convolutional network</title><date>2023-04-04</date><risdate>2023</risdate><abstract>The invention discloses an attention space-time diagram convolutional network-based airspace traffic flow prediction method. The method comprises the following steps of: (1) acquiring air traffic flow data and preprocessing the air traffic flow data; step (2), carrying out airspace sector network modeling; (3) constructing an air traffic flow time sequence; step (4), constructing an attention space-time diagram convolutional network; step (5), training the attention space-time diagram convolutional network; step (6), testing the attention space-time diagram convolutional network; aiming at a complex airspace traffic flow prediction problem, the method can simultaneously capture the spatial dependence and the time dependence of the air traffic flow, and has the capability of describing the spatial-temporal characteristics of the air traffic flow, and the attention mechanism can capture the global time dynamic trend of the air traffic flow. The air traffic flow operation rule of a large-range airspace scale can</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115907079A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SIGNALLING
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
TRAFFIC CONTROL SYSTEMS
title Airspace traffic flow prediction method based on attention space-time diagram convolutional network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A45%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WAN%20JUNQIANG&rft.date=2023-04-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115907079A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true