Ternary deep metallogenic prediction method and system based on machine learning
The invention discloses a ternary deep metallogenic prediction method and system based on machine learning, and relates to the technical field of machine learning, and the deep metallogenic prediction method comprises the steps: obtaining the attribute features of a target region; the attribute feat...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | FU GUANGMING LYU QINGTIAN YAN JIAYONG ZHANG CHONG |
description | The invention discloses a ternary deep metallogenic prediction method and system based on machine learning, and relates to the technical field of machine learning, and the deep metallogenic prediction method comprises the steps: obtaining the attribute features of a target region; the attribute features comprise geological features, geochemical features, geophysical features and remote sensing interpretation features; predicting the attribute features based on a regional metallogenic mode recognition model to obtain a regional metallogenic mode; establishing an underground three-dimensional geologic model of the target area; according to the underground three-dimensional geologic model, three-dimensional attributes of underground rock and ore in the target area are obtained; and inputting the regional metallogenic mode and the three-dimensional attributes into the trained deep prospecting prediction model to obtain metallogenic information of the target region. According to the method, prediction of the regio |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115879648A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115879648A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115879648A3</originalsourceid><addsrcrecordid>eNqNir0KwjAURrM4iPoO1wdwKP7VUYriJA7dyzX5bC-kNyHJ0reXgg_gdOCcszSvFkk5TeSASCMKex96qFiKCU5skaCzH4IjVkd5ygUjvTnD0ZzYDqIgD04q2q_N4sM-Y_Pjymzvt7Z57BBDhxzZQlG65llVx_p8OR3q6_6f5wu4tzeb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Ternary deep metallogenic prediction method and system based on machine learning</title><source>esp@cenet</source><creator>FU GUANGMING ; LYU QINGTIAN ; YAN JIAYONG ; ZHANG CHONG</creator><creatorcontrib>FU GUANGMING ; LYU QINGTIAN ; YAN JIAYONG ; ZHANG CHONG</creatorcontrib><description>The invention discloses a ternary deep metallogenic prediction method and system based on machine learning, and relates to the technical field of machine learning, and the deep metallogenic prediction method comprises the steps: obtaining the attribute features of a target region; the attribute features comprise geological features, geochemical features, geophysical features and remote sensing interpretation features; predicting the attribute features based on a regional metallogenic mode recognition model to obtain a regional metallogenic mode; establishing an underground three-dimensional geologic model of the target area; according to the underground three-dimensional geologic model, three-dimensional attributes of underground rock and ore in the target area are obtained; and inputting the regional metallogenic mode and the three-dimensional attributes into the trained deep prospecting prediction model to obtain metallogenic information of the target region. According to the method, prediction of the regio</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230331&DB=EPODOC&CC=CN&NR=115879648A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230331&DB=EPODOC&CC=CN&NR=115879648A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FU GUANGMING</creatorcontrib><creatorcontrib>LYU QINGTIAN</creatorcontrib><creatorcontrib>YAN JIAYONG</creatorcontrib><creatorcontrib>ZHANG CHONG</creatorcontrib><title>Ternary deep metallogenic prediction method and system based on machine learning</title><description>The invention discloses a ternary deep metallogenic prediction method and system based on machine learning, and relates to the technical field of machine learning, and the deep metallogenic prediction method comprises the steps: obtaining the attribute features of a target region; the attribute features comprise geological features, geochemical features, geophysical features and remote sensing interpretation features; predicting the attribute features based on a regional metallogenic mode recognition model to obtain a regional metallogenic mode; establishing an underground three-dimensional geologic model of the target area; according to the underground three-dimensional geologic model, three-dimensional attributes of underground rock and ore in the target area are obtained; and inputting the regional metallogenic mode and the three-dimensional attributes into the trained deep prospecting prediction model to obtain metallogenic information of the target region. According to the method, prediction of the regio</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNir0KwjAURrM4iPoO1wdwKP7VUYriJA7dyzX5bC-kNyHJ0reXgg_gdOCcszSvFkk5TeSASCMKex96qFiKCU5skaCzH4IjVkd5ygUjvTnD0ZzYDqIgD04q2q_N4sM-Y_Pjymzvt7Z57BBDhxzZQlG65llVx_p8OR3q6_6f5wu4tzeb</recordid><startdate>20230331</startdate><enddate>20230331</enddate><creator>FU GUANGMING</creator><creator>LYU QINGTIAN</creator><creator>YAN JIAYONG</creator><creator>ZHANG CHONG</creator><scope>EVB</scope></search><sort><creationdate>20230331</creationdate><title>Ternary deep metallogenic prediction method and system based on machine learning</title><author>FU GUANGMING ; LYU QINGTIAN ; YAN JIAYONG ; ZHANG CHONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115879648A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>FU GUANGMING</creatorcontrib><creatorcontrib>LYU QINGTIAN</creatorcontrib><creatorcontrib>YAN JIAYONG</creatorcontrib><creatorcontrib>ZHANG CHONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FU GUANGMING</au><au>LYU QINGTIAN</au><au>YAN JIAYONG</au><au>ZHANG CHONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Ternary deep metallogenic prediction method and system based on machine learning</title><date>2023-03-31</date><risdate>2023</risdate><abstract>The invention discloses a ternary deep metallogenic prediction method and system based on machine learning, and relates to the technical field of machine learning, and the deep metallogenic prediction method comprises the steps: obtaining the attribute features of a target region; the attribute features comprise geological features, geochemical features, geophysical features and remote sensing interpretation features; predicting the attribute features based on a regional metallogenic mode recognition model to obtain a regional metallogenic mode; establishing an underground three-dimensional geologic model of the target area; according to the underground three-dimensional geologic model, three-dimensional attributes of underground rock and ore in the target area are obtained; and inputting the regional metallogenic mode and the three-dimensional attributes into the trained deep prospecting prediction model to obtain metallogenic information of the target region. According to the method, prediction of the regio</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115879648A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Ternary deep metallogenic prediction method and system based on machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A40%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FU%20GUANGMING&rft.date=2023-03-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115879648A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |