Power transmission and distribution scene point cloud semantic segmentation model training method based on attention mechanism

The invention relates to a power transmission and distribution scene point cloud semantic segmentation model training method based on an attention mechanism. The method comprises the following steps: acquiring electric scene point cloud training data corresponding to a power transmission and distrib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LI PENG, ZHOU RUIYE, LI XUAN'ANG, HUANG WENQI, WU YANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LI PENG
ZHOU RUIYE
LI XUAN'ANG
HUANG WENQI
WU YANG
description The invention relates to a power transmission and distribution scene point cloud semantic segmentation model training method based on an attention mechanism. The method comprises the following steps: acquiring electric scene point cloud training data corresponding to a power transmission and distribution scene point cloud; obtaining a power transmission and distribution scene point cloud neighbor graph according to the electric scene point cloud training data; inputting the power transmission and distribution scene point cloud neighbor graph into a feature extraction module in a to-be-trained point cloud semantic segmentation model to obtain at least two point cloud scale feature graphs; based on a feature fusion module, fusing each point cloud scale feature map with at least one adjacent point cloud scale feature map to obtain each fused feature map; inputting each fusion feature map into a classification module to obtain at least two types of classification information; and training the to-be-trained point
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115862013A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115862013A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115862013A3</originalsourceid><addsrcrecordid>eNqNjTEKwkAQRdNYiHqH8QCCMSi2EhQrsbCXye6YDGRnQ2aCnWc3GzyA1f98Hu_Ps889vqkH61E0sCpHARQPntV6rgZLgzoSgi6yGLg2Dh6UAoqxG0sdSAwnLkRPbXKxsNQQyJrooUIlD8lrNqITSK5BYQ3LbPbCVmn1y0W2vpwf5XVDXXySdpie7Vne8nx_POy2eXEq_mG-bNlJyw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Power transmission and distribution scene point cloud semantic segmentation model training method based on attention mechanism</title><source>esp@cenet</source><creator>LI PENG ; ZHOU RUIYE ; LI XUAN'ANG ; HUANG WENQI ; WU YANG</creator><creatorcontrib>LI PENG ; ZHOU RUIYE ; LI XUAN'ANG ; HUANG WENQI ; WU YANG</creatorcontrib><description>The invention relates to a power transmission and distribution scene point cloud semantic segmentation model training method based on an attention mechanism. The method comprises the following steps: acquiring electric scene point cloud training data corresponding to a power transmission and distribution scene point cloud; obtaining a power transmission and distribution scene point cloud neighbor graph according to the electric scene point cloud training data; inputting the power transmission and distribution scene point cloud neighbor graph into a feature extraction module in a to-be-trained point cloud semantic segmentation model to obtain at least two point cloud scale feature graphs; based on a feature fusion module, fusing each point cloud scale feature map with at least one adjacent point cloud scale feature map to obtain each fused feature map; inputting each fusion feature map into a classification module to obtain at least two types of classification information; and training the to-be-trained point</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230328&amp;DB=EPODOC&amp;CC=CN&amp;NR=115862013A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230328&amp;DB=EPODOC&amp;CC=CN&amp;NR=115862013A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI PENG</creatorcontrib><creatorcontrib>ZHOU RUIYE</creatorcontrib><creatorcontrib>LI XUAN'ANG</creatorcontrib><creatorcontrib>HUANG WENQI</creatorcontrib><creatorcontrib>WU YANG</creatorcontrib><title>Power transmission and distribution scene point cloud semantic segmentation model training method based on attention mechanism</title><description>The invention relates to a power transmission and distribution scene point cloud semantic segmentation model training method based on an attention mechanism. The method comprises the following steps: acquiring electric scene point cloud training data corresponding to a power transmission and distribution scene point cloud; obtaining a power transmission and distribution scene point cloud neighbor graph according to the electric scene point cloud training data; inputting the power transmission and distribution scene point cloud neighbor graph into a feature extraction module in a to-be-trained point cloud semantic segmentation model to obtain at least two point cloud scale feature graphs; based on a feature fusion module, fusing each point cloud scale feature map with at least one adjacent point cloud scale feature map to obtain each fused feature map; inputting each fusion feature map into a classification module to obtain at least two types of classification information; and training the to-be-trained point</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjTEKwkAQRdNYiHqH8QCCMSi2EhQrsbCXye6YDGRnQ2aCnWc3GzyA1f98Hu_Ps889vqkH61E0sCpHARQPntV6rgZLgzoSgi6yGLg2Dh6UAoqxG0sdSAwnLkRPbXKxsNQQyJrooUIlD8lrNqITSK5BYQ3LbPbCVmn1y0W2vpwf5XVDXXySdpie7Vne8nx_POy2eXEq_mG-bNlJyw</recordid><startdate>20230328</startdate><enddate>20230328</enddate><creator>LI PENG</creator><creator>ZHOU RUIYE</creator><creator>LI XUAN'ANG</creator><creator>HUANG WENQI</creator><creator>WU YANG</creator><scope>EVB</scope></search><sort><creationdate>20230328</creationdate><title>Power transmission and distribution scene point cloud semantic segmentation model training method based on attention mechanism</title><author>LI PENG ; ZHOU RUIYE ; LI XUAN'ANG ; HUANG WENQI ; WU YANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115862013A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LI PENG</creatorcontrib><creatorcontrib>ZHOU RUIYE</creatorcontrib><creatorcontrib>LI XUAN'ANG</creatorcontrib><creatorcontrib>HUANG WENQI</creatorcontrib><creatorcontrib>WU YANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI PENG</au><au>ZHOU RUIYE</au><au>LI XUAN'ANG</au><au>HUANG WENQI</au><au>WU YANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Power transmission and distribution scene point cloud semantic segmentation model training method based on attention mechanism</title><date>2023-03-28</date><risdate>2023</risdate><abstract>The invention relates to a power transmission and distribution scene point cloud semantic segmentation model training method based on an attention mechanism. The method comprises the following steps: acquiring electric scene point cloud training data corresponding to a power transmission and distribution scene point cloud; obtaining a power transmission and distribution scene point cloud neighbor graph according to the electric scene point cloud training data; inputting the power transmission and distribution scene point cloud neighbor graph into a feature extraction module in a to-be-trained point cloud semantic segmentation model to obtain at least two point cloud scale feature graphs; based on a feature fusion module, fusing each point cloud scale feature map with at least one adjacent point cloud scale feature map to obtain each fused feature map; inputting each fusion feature map into a classification module to obtain at least two types of classification information; and training the to-be-trained point</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115862013A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Power transmission and distribution scene point cloud semantic segmentation model training method based on attention mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A01%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20PENG&rft.date=2023-03-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115862013A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true