Heterogeneous information network user abnormal behavior detection method and system based on attention
The invention relates to an attention-based heterogeneous information network user abnormal behavior detection method and system, and the method comprises the steps: firstly converting the historical interaction data of a certain period of time of a heterogeneous information network into graph data,...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WU JIECHUN GU JUNHUA NIU BINGXIN YANG LIANG ZHANG YAJUAN WANG JIAYI LI ZHENNA JIA YONGNA |
description | The invention relates to an attention-based heterogeneous information network user abnormal behavior detection method and system, and the method comprises the steps: firstly converting the historical interaction data of a certain period of time of a heterogeneous information network into graph data, and enabling each node of the graph data to represent a component object of the heterogeneous information network; the sides of the graph data reflect the relation between composition objects of the heterogeneous information network; then, a target function of a user abnormal behavior detection model is constructed based on a graph neural network, and the model derives an interlayer propagation formula represented by node attributes through neighbor information of attention aggregation nodes; and finally, performing gradient updating on each node attribute representation until all node attribute representations converge to obtain each node attribute representation. And compressing the attribute representation of e |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115859793A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115859793A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115859793A3</originalsourceid><addsrcrecordid>eNqNjjsOglAQRWksjLqHcQEWhBClNERDZWVPBt7wibwZ8mbQuHvBuACrW5xzkruO2oKMgrTEJJNCz40Ej9YLA5O9JDxgUgqAFS9ggIo6fPYSwM1h_RU9WScOkB3oW408VKjkYEZoRrxI22jV4KC0--0m2l8v97w40Cgl6Yj1_MDK_BbH6SnNjllyTv5xPmXXQSA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Heterogeneous information network user abnormal behavior detection method and system based on attention</title><source>esp@cenet</source><creator>WU JIECHUN ; GU JUNHUA ; NIU BINGXIN ; YANG LIANG ; ZHANG YAJUAN ; WANG JIAYI ; LI ZHENNA ; JIA YONGNA</creator><creatorcontrib>WU JIECHUN ; GU JUNHUA ; NIU BINGXIN ; YANG LIANG ; ZHANG YAJUAN ; WANG JIAYI ; LI ZHENNA ; JIA YONGNA</creatorcontrib><description>The invention relates to an attention-based heterogeneous information network user abnormal behavior detection method and system, and the method comprises the steps: firstly converting the historical interaction data of a certain period of time of a heterogeneous information network into graph data, and enabling each node of the graph data to represent a component object of the heterogeneous information network; the sides of the graph data reflect the relation between composition objects of the heterogeneous information network; then, a target function of a user abnormal behavior detection model is constructed based on a graph neural network, and the model derives an interlayer propagation formula represented by node attributes through neighbor information of attention aggregation nodes; and finally, performing gradient updating on each node attribute representation until all node attribute representations converge to obtain each node attribute representation. And compressing the attribute representation of e</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230328&DB=EPODOC&CC=CN&NR=115859793A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25544,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230328&DB=EPODOC&CC=CN&NR=115859793A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WU JIECHUN</creatorcontrib><creatorcontrib>GU JUNHUA</creatorcontrib><creatorcontrib>NIU BINGXIN</creatorcontrib><creatorcontrib>YANG LIANG</creatorcontrib><creatorcontrib>ZHANG YAJUAN</creatorcontrib><creatorcontrib>WANG JIAYI</creatorcontrib><creatorcontrib>LI ZHENNA</creatorcontrib><creatorcontrib>JIA YONGNA</creatorcontrib><title>Heterogeneous information network user abnormal behavior detection method and system based on attention</title><description>The invention relates to an attention-based heterogeneous information network user abnormal behavior detection method and system, and the method comprises the steps: firstly converting the historical interaction data of a certain period of time of a heterogeneous information network into graph data, and enabling each node of the graph data to represent a component object of the heterogeneous information network; the sides of the graph data reflect the relation between composition objects of the heterogeneous information network; then, a target function of a user abnormal behavior detection model is constructed based on a graph neural network, and the model derives an interlayer propagation formula represented by node attributes through neighbor information of attention aggregation nodes; and finally, performing gradient updating on each node attribute representation until all node attribute representations converge to obtain each node attribute representation. And compressing the attribute representation of e</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjjsOglAQRWksjLqHcQEWhBClNERDZWVPBt7wibwZ8mbQuHvBuACrW5xzkruO2oKMgrTEJJNCz40Ej9YLA5O9JDxgUgqAFS9ggIo6fPYSwM1h_RU9WScOkB3oW408VKjkYEZoRrxI22jV4KC0--0m2l8v97w40Cgl6Yj1_MDK_BbH6SnNjllyTv5xPmXXQSA</recordid><startdate>20230328</startdate><enddate>20230328</enddate><creator>WU JIECHUN</creator><creator>GU JUNHUA</creator><creator>NIU BINGXIN</creator><creator>YANG LIANG</creator><creator>ZHANG YAJUAN</creator><creator>WANG JIAYI</creator><creator>LI ZHENNA</creator><creator>JIA YONGNA</creator><scope>EVB</scope></search><sort><creationdate>20230328</creationdate><title>Heterogeneous information network user abnormal behavior detection method and system based on attention</title><author>WU JIECHUN ; GU JUNHUA ; NIU BINGXIN ; YANG LIANG ; ZHANG YAJUAN ; WANG JIAYI ; LI ZHENNA ; JIA YONGNA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115859793A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WU JIECHUN</creatorcontrib><creatorcontrib>GU JUNHUA</creatorcontrib><creatorcontrib>NIU BINGXIN</creatorcontrib><creatorcontrib>YANG LIANG</creatorcontrib><creatorcontrib>ZHANG YAJUAN</creatorcontrib><creatorcontrib>WANG JIAYI</creatorcontrib><creatorcontrib>LI ZHENNA</creatorcontrib><creatorcontrib>JIA YONGNA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WU JIECHUN</au><au>GU JUNHUA</au><au>NIU BINGXIN</au><au>YANG LIANG</au><au>ZHANG YAJUAN</au><au>WANG JIAYI</au><au>LI ZHENNA</au><au>JIA YONGNA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Heterogeneous information network user abnormal behavior detection method and system based on attention</title><date>2023-03-28</date><risdate>2023</risdate><abstract>The invention relates to an attention-based heterogeneous information network user abnormal behavior detection method and system, and the method comprises the steps: firstly converting the historical interaction data of a certain period of time of a heterogeneous information network into graph data, and enabling each node of the graph data to represent a component object of the heterogeneous information network; the sides of the graph data reflect the relation between composition objects of the heterogeneous information network; then, a target function of a user abnormal behavior detection model is constructed based on a graph neural network, and the model derives an interlayer propagation formula represented by node attributes through neighbor information of attention aggregation nodes; and finally, performing gradient updating on each node attribute representation until all node attribute representations converge to obtain each node attribute representation. And compressing the attribute representation of e</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115859793A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Heterogeneous information network user abnormal behavior detection method and system based on attention |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WU%20JIECHUN&rft.date=2023-03-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115859793A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |