Heterogeneous information network user abnormal behavior detection method and system based on attention

The invention relates to an attention-based heterogeneous information network user abnormal behavior detection method and system, and the method comprises the steps: firstly converting the historical interaction data of a certain period of time of a heterogeneous information network into graph data,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WU JIECHUN, GU JUNHUA, NIU BINGXIN, YANG LIANG, ZHANG YAJUAN, WANG JIAYI, LI ZHENNA, JIA YONGNA
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WU JIECHUN
GU JUNHUA
NIU BINGXIN
YANG LIANG
ZHANG YAJUAN
WANG JIAYI
LI ZHENNA
JIA YONGNA
description The invention relates to an attention-based heterogeneous information network user abnormal behavior detection method and system, and the method comprises the steps: firstly converting the historical interaction data of a certain period of time of a heterogeneous information network into graph data, and enabling each node of the graph data to represent a component object of the heterogeneous information network; the sides of the graph data reflect the relation between composition objects of the heterogeneous information network; then, a target function of a user abnormal behavior detection model is constructed based on a graph neural network, and the model derives an interlayer propagation formula represented by node attributes through neighbor information of attention aggregation nodes; and finally, performing gradient updating on each node attribute representation until all node attribute representations converge to obtain each node attribute representation. And compressing the attribute representation of e
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115859793A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115859793A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115859793A3</originalsourceid><addsrcrecordid>eNqNjjsOglAQRWksjLqHcQEWhBClNERDZWVPBt7wibwZ8mbQuHvBuACrW5xzkruO2oKMgrTEJJNCz40Ej9YLA5O9JDxgUgqAFS9ggIo6fPYSwM1h_RU9WScOkB3oW408VKjkYEZoRrxI22jV4KC0--0m2l8v97w40Cgl6Yj1_MDK_BbH6SnNjllyTv5xPmXXQSA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Heterogeneous information network user abnormal behavior detection method and system based on attention</title><source>esp@cenet</source><creator>WU JIECHUN ; GU JUNHUA ; NIU BINGXIN ; YANG LIANG ; ZHANG YAJUAN ; WANG JIAYI ; LI ZHENNA ; JIA YONGNA</creator><creatorcontrib>WU JIECHUN ; GU JUNHUA ; NIU BINGXIN ; YANG LIANG ; ZHANG YAJUAN ; WANG JIAYI ; LI ZHENNA ; JIA YONGNA</creatorcontrib><description>The invention relates to an attention-based heterogeneous information network user abnormal behavior detection method and system, and the method comprises the steps: firstly converting the historical interaction data of a certain period of time of a heterogeneous information network into graph data, and enabling each node of the graph data to represent a component object of the heterogeneous information network; the sides of the graph data reflect the relation between composition objects of the heterogeneous information network; then, a target function of a user abnormal behavior detection model is constructed based on a graph neural network, and the model derives an interlayer propagation formula represented by node attributes through neighbor information of attention aggregation nodes; and finally, performing gradient updating on each node attribute representation until all node attribute representations converge to obtain each node attribute representation. And compressing the attribute representation of e</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230328&amp;DB=EPODOC&amp;CC=CN&amp;NR=115859793A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25544,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230328&amp;DB=EPODOC&amp;CC=CN&amp;NR=115859793A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WU JIECHUN</creatorcontrib><creatorcontrib>GU JUNHUA</creatorcontrib><creatorcontrib>NIU BINGXIN</creatorcontrib><creatorcontrib>YANG LIANG</creatorcontrib><creatorcontrib>ZHANG YAJUAN</creatorcontrib><creatorcontrib>WANG JIAYI</creatorcontrib><creatorcontrib>LI ZHENNA</creatorcontrib><creatorcontrib>JIA YONGNA</creatorcontrib><title>Heterogeneous information network user abnormal behavior detection method and system based on attention</title><description>The invention relates to an attention-based heterogeneous information network user abnormal behavior detection method and system, and the method comprises the steps: firstly converting the historical interaction data of a certain period of time of a heterogeneous information network into graph data, and enabling each node of the graph data to represent a component object of the heterogeneous information network; the sides of the graph data reflect the relation between composition objects of the heterogeneous information network; then, a target function of a user abnormal behavior detection model is constructed based on a graph neural network, and the model derives an interlayer propagation formula represented by node attributes through neighbor information of attention aggregation nodes; and finally, performing gradient updating on each node attribute representation until all node attribute representations converge to obtain each node attribute representation. And compressing the attribute representation of e</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjjsOglAQRWksjLqHcQEWhBClNERDZWVPBt7wibwZ8mbQuHvBuACrW5xzkruO2oKMgrTEJJNCz40Ej9YLA5O9JDxgUgqAFS9ggIo6fPYSwM1h_RU9WScOkB3oW408VKjkYEZoRrxI22jV4KC0--0m2l8v97w40Cgl6Yj1_MDK_BbH6SnNjllyTv5xPmXXQSA</recordid><startdate>20230328</startdate><enddate>20230328</enddate><creator>WU JIECHUN</creator><creator>GU JUNHUA</creator><creator>NIU BINGXIN</creator><creator>YANG LIANG</creator><creator>ZHANG YAJUAN</creator><creator>WANG JIAYI</creator><creator>LI ZHENNA</creator><creator>JIA YONGNA</creator><scope>EVB</scope></search><sort><creationdate>20230328</creationdate><title>Heterogeneous information network user abnormal behavior detection method and system based on attention</title><author>WU JIECHUN ; GU JUNHUA ; NIU BINGXIN ; YANG LIANG ; ZHANG YAJUAN ; WANG JIAYI ; LI ZHENNA ; JIA YONGNA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115859793A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WU JIECHUN</creatorcontrib><creatorcontrib>GU JUNHUA</creatorcontrib><creatorcontrib>NIU BINGXIN</creatorcontrib><creatorcontrib>YANG LIANG</creatorcontrib><creatorcontrib>ZHANG YAJUAN</creatorcontrib><creatorcontrib>WANG JIAYI</creatorcontrib><creatorcontrib>LI ZHENNA</creatorcontrib><creatorcontrib>JIA YONGNA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WU JIECHUN</au><au>GU JUNHUA</au><au>NIU BINGXIN</au><au>YANG LIANG</au><au>ZHANG YAJUAN</au><au>WANG JIAYI</au><au>LI ZHENNA</au><au>JIA YONGNA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Heterogeneous information network user abnormal behavior detection method and system based on attention</title><date>2023-03-28</date><risdate>2023</risdate><abstract>The invention relates to an attention-based heterogeneous information network user abnormal behavior detection method and system, and the method comprises the steps: firstly converting the historical interaction data of a certain period of time of a heterogeneous information network into graph data, and enabling each node of the graph data to represent a component object of the heterogeneous information network; the sides of the graph data reflect the relation between composition objects of the heterogeneous information network; then, a target function of a user abnormal behavior detection model is constructed based on a graph neural network, and the model derives an interlayer propagation formula represented by node attributes through neighbor information of attention aggregation nodes; and finally, performing gradient updating on each node attribute representation until all node attribute representations converge to obtain each node attribute representation. And compressing the attribute representation of e</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115859793A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Heterogeneous information network user abnormal behavior detection method and system based on attention
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WU%20JIECHUN&rft.date=2023-03-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115859793A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true