Deep learning segmentation method of carbon fiber composite material data set
The invention provides a deep learning segmentation method for a carbon fiber composite material data set, and the method comprises the steps: obtaining an image of a related carbon fiber composite material through an XCT technology, constructing an original data set of a model, generating a two-dim...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZHENG KEHONG QIAO LIZHENG CHEN HAO OH SEUNG-RYEOL ZHANG XIYAN LU WENPAN CAO XIAOQI |
description | The invention provides a deep learning segmentation method for a carbon fiber composite material data set, and the method comprises the steps: obtaining an image of a related carbon fiber composite material through an XCT technology, constructing an original data set of a model, generating a two-dimensional random synthesis carbon fiber image through parametric modeling, and carrying out the segmentation of the two-dimensional random synthesis carbon fiber image. And generating a virtual data set which is the same as a real structure through an adversarial learning style migration network Pix2PixHD, taking the original data set and the virtual data set as a mixed data set, inputting the mixed data set into a semantic segmentation network based on Swin-Transformer, and finally forming a semantic segmentation network capable of accurately segmenting a carbon fiber composite material image. The method solves the problems that original data sets are insufficient and manual annotation is difficult, intelligent and |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115830323A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115830323A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115830323A3</originalsourceid><addsrcrecordid>eNqNi8EKwjAQBXPxIOo_rB8gWIPgVariRU_eyzZ9bQNJNiT7_9iDH-BpYJhZm9cNyBTAJfk0UcUUkZTVS6IInWUgGclx6Rcx-h6FnMQs1SsosqJ4DjSw8vLq1qxGDhW7Hzdm_7h_2ucBWTrUzA4J2rXvpjlf7NGe7NX-03wB2pE2Hw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Deep learning segmentation method of carbon fiber composite material data set</title><source>esp@cenet</source><creator>ZHENG KEHONG ; QIAO LIZHENG ; CHEN HAO ; OH SEUNG-RYEOL ; ZHANG XIYAN ; LU WENPAN ; CAO XIAOQI</creator><creatorcontrib>ZHENG KEHONG ; QIAO LIZHENG ; CHEN HAO ; OH SEUNG-RYEOL ; ZHANG XIYAN ; LU WENPAN ; CAO XIAOQI</creatorcontrib><description>The invention provides a deep learning segmentation method for a carbon fiber composite material data set, and the method comprises the steps: obtaining an image of a related carbon fiber composite material through an XCT technology, constructing an original data set of a model, generating a two-dimensional random synthesis carbon fiber image through parametric modeling, and carrying out the segmentation of the two-dimensional random synthesis carbon fiber image. And generating a virtual data set which is the same as a real structure through an adversarial learning style migration network Pix2PixHD, taking the original data set and the virtual data set as a mixed data set, inputting the mixed data set into a semantic segmentation network based on Swin-Transformer, and finally forming a semantic segmentation network capable of accurately segmenting a carbon fiber composite material image. The method solves the problems that original data sets are insufficient and manual annotation is difficult, intelligent and</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230321&DB=EPODOC&CC=CN&NR=115830323A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230321&DB=EPODOC&CC=CN&NR=115830323A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHENG KEHONG</creatorcontrib><creatorcontrib>QIAO LIZHENG</creatorcontrib><creatorcontrib>CHEN HAO</creatorcontrib><creatorcontrib>OH SEUNG-RYEOL</creatorcontrib><creatorcontrib>ZHANG XIYAN</creatorcontrib><creatorcontrib>LU WENPAN</creatorcontrib><creatorcontrib>CAO XIAOQI</creatorcontrib><title>Deep learning segmentation method of carbon fiber composite material data set</title><description>The invention provides a deep learning segmentation method for a carbon fiber composite material data set, and the method comprises the steps: obtaining an image of a related carbon fiber composite material through an XCT technology, constructing an original data set of a model, generating a two-dimensional random synthesis carbon fiber image through parametric modeling, and carrying out the segmentation of the two-dimensional random synthesis carbon fiber image. And generating a virtual data set which is the same as a real structure through an adversarial learning style migration network Pix2PixHD, taking the original data set and the virtual data set as a mixed data set, inputting the mixed data set into a semantic segmentation network based on Swin-Transformer, and finally forming a semantic segmentation network capable of accurately segmenting a carbon fiber composite material image. The method solves the problems that original data sets are insufficient and manual annotation is difficult, intelligent and</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi8EKwjAQBXPxIOo_rB8gWIPgVariRU_eyzZ9bQNJNiT7_9iDH-BpYJhZm9cNyBTAJfk0UcUUkZTVS6IInWUgGclx6Rcx-h6FnMQs1SsosqJ4DjSw8vLq1qxGDhW7Hzdm_7h_2ucBWTrUzA4J2rXvpjlf7NGe7NX-03wB2pE2Hw</recordid><startdate>20230321</startdate><enddate>20230321</enddate><creator>ZHENG KEHONG</creator><creator>QIAO LIZHENG</creator><creator>CHEN HAO</creator><creator>OH SEUNG-RYEOL</creator><creator>ZHANG XIYAN</creator><creator>LU WENPAN</creator><creator>CAO XIAOQI</creator><scope>EVB</scope></search><sort><creationdate>20230321</creationdate><title>Deep learning segmentation method of carbon fiber composite material data set</title><author>ZHENG KEHONG ; QIAO LIZHENG ; CHEN HAO ; OH SEUNG-RYEOL ; ZHANG XIYAN ; LU WENPAN ; CAO XIAOQI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115830323A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHENG KEHONG</creatorcontrib><creatorcontrib>QIAO LIZHENG</creatorcontrib><creatorcontrib>CHEN HAO</creatorcontrib><creatorcontrib>OH SEUNG-RYEOL</creatorcontrib><creatorcontrib>ZHANG XIYAN</creatorcontrib><creatorcontrib>LU WENPAN</creatorcontrib><creatorcontrib>CAO XIAOQI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHENG KEHONG</au><au>QIAO LIZHENG</au><au>CHEN HAO</au><au>OH SEUNG-RYEOL</au><au>ZHANG XIYAN</au><au>LU WENPAN</au><au>CAO XIAOQI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Deep learning segmentation method of carbon fiber composite material data set</title><date>2023-03-21</date><risdate>2023</risdate><abstract>The invention provides a deep learning segmentation method for a carbon fiber composite material data set, and the method comprises the steps: obtaining an image of a related carbon fiber composite material through an XCT technology, constructing an original data set of a model, generating a two-dimensional random synthesis carbon fiber image through parametric modeling, and carrying out the segmentation of the two-dimensional random synthesis carbon fiber image. And generating a virtual data set which is the same as a real structure through an adversarial learning style migration network Pix2PixHD, taking the original data set and the virtual data set as a mixed data set, inputting the mixed data set into a semantic segmentation network based on Swin-Transformer, and finally forming a semantic segmentation network capable of accurately segmenting a carbon fiber composite material image. The method solves the problems that original data sets are insufficient and manual annotation is difficult, intelligent and</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115830323A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | Deep learning segmentation method of carbon fiber composite material data set |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A00%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHENG%20KEHONG&rft.date=2023-03-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115830323A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |