Deep learning segmentation method of carbon fiber composite material data set

The invention provides a deep learning segmentation method for a carbon fiber composite material data set, and the method comprises the steps: obtaining an image of a related carbon fiber composite material through an XCT technology, constructing an original data set of a model, generating a two-dim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHENG KEHONG, QIAO LIZHENG, CHEN HAO, OH SEUNG-RYEOL, ZHANG XIYAN, LU WENPAN, CAO XIAOQI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHENG KEHONG
QIAO LIZHENG
CHEN HAO
OH SEUNG-RYEOL
ZHANG XIYAN
LU WENPAN
CAO XIAOQI
description The invention provides a deep learning segmentation method for a carbon fiber composite material data set, and the method comprises the steps: obtaining an image of a related carbon fiber composite material through an XCT technology, constructing an original data set of a model, generating a two-dimensional random synthesis carbon fiber image through parametric modeling, and carrying out the segmentation of the two-dimensional random synthesis carbon fiber image. And generating a virtual data set which is the same as a real structure through an adversarial learning style migration network Pix2PixHD, taking the original data set and the virtual data set as a mixed data set, inputting the mixed data set into a semantic segmentation network based on Swin-Transformer, and finally forming a semantic segmentation network capable of accurately segmenting a carbon fiber composite material image. The method solves the problems that original data sets are insufficient and manual annotation is difficult, intelligent and
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115830323A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115830323A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115830323A3</originalsourceid><addsrcrecordid>eNqNi8EKwjAQBXPxIOo_rB8gWIPgVariRU_eyzZ9bQNJNiT7_9iDH-BpYJhZm9cNyBTAJfk0UcUUkZTVS6IInWUgGclx6Rcx-h6FnMQs1SsosqJ4DjSw8vLq1qxGDhW7Hzdm_7h_2ucBWTrUzA4J2rXvpjlf7NGe7NX-03wB2pE2Hw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Deep learning segmentation method of carbon fiber composite material data set</title><source>esp@cenet</source><creator>ZHENG KEHONG ; QIAO LIZHENG ; CHEN HAO ; OH SEUNG-RYEOL ; ZHANG XIYAN ; LU WENPAN ; CAO XIAOQI</creator><creatorcontrib>ZHENG KEHONG ; QIAO LIZHENG ; CHEN HAO ; OH SEUNG-RYEOL ; ZHANG XIYAN ; LU WENPAN ; CAO XIAOQI</creatorcontrib><description>The invention provides a deep learning segmentation method for a carbon fiber composite material data set, and the method comprises the steps: obtaining an image of a related carbon fiber composite material through an XCT technology, constructing an original data set of a model, generating a two-dimensional random synthesis carbon fiber image through parametric modeling, and carrying out the segmentation of the two-dimensional random synthesis carbon fiber image. And generating a virtual data set which is the same as a real structure through an adversarial learning style migration network Pix2PixHD, taking the original data set and the virtual data set as a mixed data set, inputting the mixed data set into a semantic segmentation network based on Swin-Transformer, and finally forming a semantic segmentation network capable of accurately segmenting a carbon fiber composite material image. The method solves the problems that original data sets are insufficient and manual annotation is difficult, intelligent and</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230321&amp;DB=EPODOC&amp;CC=CN&amp;NR=115830323A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230321&amp;DB=EPODOC&amp;CC=CN&amp;NR=115830323A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHENG KEHONG</creatorcontrib><creatorcontrib>QIAO LIZHENG</creatorcontrib><creatorcontrib>CHEN HAO</creatorcontrib><creatorcontrib>OH SEUNG-RYEOL</creatorcontrib><creatorcontrib>ZHANG XIYAN</creatorcontrib><creatorcontrib>LU WENPAN</creatorcontrib><creatorcontrib>CAO XIAOQI</creatorcontrib><title>Deep learning segmentation method of carbon fiber composite material data set</title><description>The invention provides a deep learning segmentation method for a carbon fiber composite material data set, and the method comprises the steps: obtaining an image of a related carbon fiber composite material through an XCT technology, constructing an original data set of a model, generating a two-dimensional random synthesis carbon fiber image through parametric modeling, and carrying out the segmentation of the two-dimensional random synthesis carbon fiber image. And generating a virtual data set which is the same as a real structure through an adversarial learning style migration network Pix2PixHD, taking the original data set and the virtual data set as a mixed data set, inputting the mixed data set into a semantic segmentation network based on Swin-Transformer, and finally forming a semantic segmentation network capable of accurately segmenting a carbon fiber composite material image. The method solves the problems that original data sets are insufficient and manual annotation is difficult, intelligent and</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi8EKwjAQBXPxIOo_rB8gWIPgVariRU_eyzZ9bQNJNiT7_9iDH-BpYJhZm9cNyBTAJfk0UcUUkZTVS6IInWUgGclx6Rcx-h6FnMQs1SsosqJ4DjSw8vLq1qxGDhW7Hzdm_7h_2ucBWTrUzA4J2rXvpjlf7NGe7NX-03wB2pE2Hw</recordid><startdate>20230321</startdate><enddate>20230321</enddate><creator>ZHENG KEHONG</creator><creator>QIAO LIZHENG</creator><creator>CHEN HAO</creator><creator>OH SEUNG-RYEOL</creator><creator>ZHANG XIYAN</creator><creator>LU WENPAN</creator><creator>CAO XIAOQI</creator><scope>EVB</scope></search><sort><creationdate>20230321</creationdate><title>Deep learning segmentation method of carbon fiber composite material data set</title><author>ZHENG KEHONG ; QIAO LIZHENG ; CHEN HAO ; OH SEUNG-RYEOL ; ZHANG XIYAN ; LU WENPAN ; CAO XIAOQI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115830323A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHENG KEHONG</creatorcontrib><creatorcontrib>QIAO LIZHENG</creatorcontrib><creatorcontrib>CHEN HAO</creatorcontrib><creatorcontrib>OH SEUNG-RYEOL</creatorcontrib><creatorcontrib>ZHANG XIYAN</creatorcontrib><creatorcontrib>LU WENPAN</creatorcontrib><creatorcontrib>CAO XIAOQI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHENG KEHONG</au><au>QIAO LIZHENG</au><au>CHEN HAO</au><au>OH SEUNG-RYEOL</au><au>ZHANG XIYAN</au><au>LU WENPAN</au><au>CAO XIAOQI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Deep learning segmentation method of carbon fiber composite material data set</title><date>2023-03-21</date><risdate>2023</risdate><abstract>The invention provides a deep learning segmentation method for a carbon fiber composite material data set, and the method comprises the steps: obtaining an image of a related carbon fiber composite material through an XCT technology, constructing an original data set of a model, generating a two-dimensional random synthesis carbon fiber image through parametric modeling, and carrying out the segmentation of the two-dimensional random synthesis carbon fiber image. And generating a virtual data set which is the same as a real structure through an adversarial learning style migration network Pix2PixHD, taking the original data set and the virtual data set as a mixed data set, inputting the mixed data set into a semantic segmentation network based on Swin-Transformer, and finally forming a semantic segmentation network capable of accurately segmenting a carbon fiber composite material image. The method solves the problems that original data sets are insufficient and manual annotation is difficult, intelligent and</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115830323A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Deep learning segmentation method of carbon fiber composite material data set
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A00%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHENG%20KEHONG&rft.date=2023-03-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115830323A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true