Large-scale pre-training method, device and equipment for multi-modal data of power transformation main equipment

The invention discloses a large-scale pre-training method, device and equipment for multi-modal data of power transformation main equipment, and the method comprises the steps: obtaining initial multi-modal data, carrying out the preprocessing of the initial multi-modal data, obtaining the multi-mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LUO MU, ZHANG PENG, HAN JINSI, JIANG GUANGXIN, LI ZHONGPENG, XIA WEISHANG, GAN JINRUI, LIU HAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LUO MU
ZHANG PENG
HAN JINSI
JIANG GUANGXIN
LI ZHONGPENG
XIA WEISHANG
GAN JINRUI
LIU HAO
description The invention discloses a large-scale pre-training method, device and equipment for multi-modal data of power transformation main equipment, and the method comprises the steps: obtaining initial multi-modal data, carrying out the preprocessing of the initial multi-modal data, obtaining the multi-modal data, and enabling the multi-modal data to comprise the online monitoring data and voiceprint data of the power transformation main equipment; respectively carrying out hidden layer feature extraction on the online monitoring quantity data and the voiceprint data, and determining a first hidden layer feature of the online monitoring quantity data and a second hidden layer feature of the voiceprint data; performing enhancement processing on the first hidden layer feature and the second hidden layer feature, and performing splicing processing to obtain a target feature; and performing multi-modal interaction processing based on the target features, constructing a loss function based on a multi-modal interaction pr
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115828186A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115828186A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115828186A3</originalsourceid><addsrcrecordid>eNqNjLEKwjAQQLs4iPoP526GKkpXKYqDOLmXo7m2geQuTa76-3YQXJ3e8t5bFuMdU08mt-gJYiKjCR077iGQDmJ3YOnlWgJkCzROLgZihU4ShMmrM0EserCoCNJBlDclmB-cZyWgOmEI8_HXrotFhz7T5stVsb1envXNUJSGcsSWmLSpH2V5rPZVWZ3Oh3-cD45lQ9w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Large-scale pre-training method, device and equipment for multi-modal data of power transformation main equipment</title><source>esp@cenet</source><creator>LUO MU ; ZHANG PENG ; HAN JINSI ; JIANG GUANGXIN ; LI ZHONGPENG ; XIA WEISHANG ; GAN JINRUI ; LIU HAO</creator><creatorcontrib>LUO MU ; ZHANG PENG ; HAN JINSI ; JIANG GUANGXIN ; LI ZHONGPENG ; XIA WEISHANG ; GAN JINRUI ; LIU HAO</creatorcontrib><description>The invention discloses a large-scale pre-training method, device and equipment for multi-modal data of power transformation main equipment, and the method comprises the steps: obtaining initial multi-modal data, carrying out the preprocessing of the initial multi-modal data, obtaining the multi-modal data, and enabling the multi-modal data to comprise the online monitoring data and voiceprint data of the power transformation main equipment; respectively carrying out hidden layer feature extraction on the online monitoring quantity data and the voiceprint data, and determining a first hidden layer feature of the online monitoring quantity data and a second hidden layer feature of the voiceprint data; performing enhancement processing on the first hidden layer feature and the second hidden layer feature, and performing splicing processing to obtain a target feature; and performing multi-modal interaction processing based on the target features, constructing a loss function based on a multi-modal interaction pr</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230321&amp;DB=EPODOC&amp;CC=CN&amp;NR=115828186A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230321&amp;DB=EPODOC&amp;CC=CN&amp;NR=115828186A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LUO MU</creatorcontrib><creatorcontrib>ZHANG PENG</creatorcontrib><creatorcontrib>HAN JINSI</creatorcontrib><creatorcontrib>JIANG GUANGXIN</creatorcontrib><creatorcontrib>LI ZHONGPENG</creatorcontrib><creatorcontrib>XIA WEISHANG</creatorcontrib><creatorcontrib>GAN JINRUI</creatorcontrib><creatorcontrib>LIU HAO</creatorcontrib><title>Large-scale pre-training method, device and equipment for multi-modal data of power transformation main equipment</title><description>The invention discloses a large-scale pre-training method, device and equipment for multi-modal data of power transformation main equipment, and the method comprises the steps: obtaining initial multi-modal data, carrying out the preprocessing of the initial multi-modal data, obtaining the multi-modal data, and enabling the multi-modal data to comprise the online monitoring data and voiceprint data of the power transformation main equipment; respectively carrying out hidden layer feature extraction on the online monitoring quantity data and the voiceprint data, and determining a first hidden layer feature of the online monitoring quantity data and a second hidden layer feature of the voiceprint data; performing enhancement processing on the first hidden layer feature and the second hidden layer feature, and performing splicing processing to obtain a target feature; and performing multi-modal interaction processing based on the target features, constructing a loss function based on a multi-modal interaction pr</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjLEKwjAQQLs4iPoP526GKkpXKYqDOLmXo7m2geQuTa76-3YQXJ3e8t5bFuMdU08mt-gJYiKjCR077iGQDmJ3YOnlWgJkCzROLgZihU4ShMmrM0EserCoCNJBlDclmB-cZyWgOmEI8_HXrotFhz7T5stVsb1envXNUJSGcsSWmLSpH2V5rPZVWZ3Oh3-cD45lQ9w</recordid><startdate>20230321</startdate><enddate>20230321</enddate><creator>LUO MU</creator><creator>ZHANG PENG</creator><creator>HAN JINSI</creator><creator>JIANG GUANGXIN</creator><creator>LI ZHONGPENG</creator><creator>XIA WEISHANG</creator><creator>GAN JINRUI</creator><creator>LIU HAO</creator><scope>EVB</scope></search><sort><creationdate>20230321</creationdate><title>Large-scale pre-training method, device and equipment for multi-modal data of power transformation main equipment</title><author>LUO MU ; ZHANG PENG ; HAN JINSI ; JIANG GUANGXIN ; LI ZHONGPENG ; XIA WEISHANG ; GAN JINRUI ; LIU HAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115828186A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>LUO MU</creatorcontrib><creatorcontrib>ZHANG PENG</creatorcontrib><creatorcontrib>HAN JINSI</creatorcontrib><creatorcontrib>JIANG GUANGXIN</creatorcontrib><creatorcontrib>LI ZHONGPENG</creatorcontrib><creatorcontrib>XIA WEISHANG</creatorcontrib><creatorcontrib>GAN JINRUI</creatorcontrib><creatorcontrib>LIU HAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LUO MU</au><au>ZHANG PENG</au><au>HAN JINSI</au><au>JIANG GUANGXIN</au><au>LI ZHONGPENG</au><au>XIA WEISHANG</au><au>GAN JINRUI</au><au>LIU HAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Large-scale pre-training method, device and equipment for multi-modal data of power transformation main equipment</title><date>2023-03-21</date><risdate>2023</risdate><abstract>The invention discloses a large-scale pre-training method, device and equipment for multi-modal data of power transformation main equipment, and the method comprises the steps: obtaining initial multi-modal data, carrying out the preprocessing of the initial multi-modal data, obtaining the multi-modal data, and enabling the multi-modal data to comprise the online monitoring data and voiceprint data of the power transformation main equipment; respectively carrying out hidden layer feature extraction on the online monitoring quantity data and the voiceprint data, and determining a first hidden layer feature of the online monitoring quantity data and a second hidden layer feature of the voiceprint data; performing enhancement processing on the first hidden layer feature and the second hidden layer feature, and performing splicing processing to obtain a target feature; and performing multi-modal interaction processing based on the target features, constructing a loss function based on a multi-modal interaction pr</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115828186A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Large-scale pre-training method, device and equipment for multi-modal data of power transformation main equipment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A42%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LUO%20MU&rft.date=2023-03-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115828186A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true