Alzheimer's disease classification device and method based on multi-task graph isomorphic network

The invention provides an Alzheimer's disease classification device and method based on a multi-task graph isomorphic network, and relates to the technical field of Alzheimer's disease classification. The method comprises the following steps: preprocessing M groups of functional magnetic r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHONG WEIYING, LI SHUO, XU HUANGE, WANG ZHIQIONG, LIN ZICAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHONG WEIYING
LI SHUO
XU HUANGE
WANG ZHIQIONG
LIN ZICAN
description The invention provides an Alzheimer's disease classification device and method based on a multi-task graph isomorphic network, and relates to the technical field of Alzheimer's disease classification. The method comprises the following steps: preprocessing M groups of functional magnetic resonance imaging data of AD patients and normal persons through an fMRI data preprocessing module to obtain M groups of standard functional magnetic resonance imaging; performing time sequence extraction by using the obtained standard function magnetic resonance imaging through a data extraction module, constructing a brain function network, and extracting the characteristics of nodes in the brain function network from the obtained M groups of binary matrixes, in the classification prediction module, node feature fusion is carried out on data obtained from a previous module by using a graph isomorphic network, new data obtained after node fusion is used for training an Alzheimer's disease classification task, and then two st
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115798709A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115798709A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115798709A3</originalsourceid><addsrcrecordid>eNqNyj0KwkAQQOE0FqLeYaysAgaRmDIExcrKPoy7k-yQ_WNnVfD0pvAAVq9437LA1n4MsaO0E9AshEKgLIrwwAozBw-aXqwI0GtwlE3Q8JiVhnm5p81cZpQJxoTRAEtwIUXDCjzld0jTulgMaIU2v66K7eV8764lxdCTRFQ0y767VdWxbk71vmkP_5gvJWw-Dw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Alzheimer's disease classification device and method based on multi-task graph isomorphic network</title><source>esp@cenet</source><creator>ZHONG WEIYING ; LI SHUO ; XU HUANGE ; WANG ZHIQIONG ; LIN ZICAN</creator><creatorcontrib>ZHONG WEIYING ; LI SHUO ; XU HUANGE ; WANG ZHIQIONG ; LIN ZICAN</creatorcontrib><description>The invention provides an Alzheimer's disease classification device and method based on a multi-task graph isomorphic network, and relates to the technical field of Alzheimer's disease classification. The method comprises the following steps: preprocessing M groups of functional magnetic resonance imaging data of AD patients and normal persons through an fMRI data preprocessing module to obtain M groups of standard functional magnetic resonance imaging; performing time sequence extraction by using the obtained standard function magnetic resonance imaging through a data extraction module, constructing a brain function network, and extracting the characteristics of nodes in the brain function network from the obtained M groups of binary matrixes, in the classification prediction module, node feature fusion is carried out on data obtained from a previous module by using a graph isomorphic network, new data obtained after node fusion is used for training an Alzheimer's disease classification task, and then two st</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230314&amp;DB=EPODOC&amp;CC=CN&amp;NR=115798709A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230314&amp;DB=EPODOC&amp;CC=CN&amp;NR=115798709A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHONG WEIYING</creatorcontrib><creatorcontrib>LI SHUO</creatorcontrib><creatorcontrib>XU HUANGE</creatorcontrib><creatorcontrib>WANG ZHIQIONG</creatorcontrib><creatorcontrib>LIN ZICAN</creatorcontrib><title>Alzheimer's disease classification device and method based on multi-task graph isomorphic network</title><description>The invention provides an Alzheimer's disease classification device and method based on a multi-task graph isomorphic network, and relates to the technical field of Alzheimer's disease classification. The method comprises the following steps: preprocessing M groups of functional magnetic resonance imaging data of AD patients and normal persons through an fMRI data preprocessing module to obtain M groups of standard functional magnetic resonance imaging; performing time sequence extraction by using the obtained standard function magnetic resonance imaging through a data extraction module, constructing a brain function network, and extracting the characteristics of nodes in the brain function network from the obtained M groups of binary matrixes, in the classification prediction module, node feature fusion is carried out on data obtained from a previous module by using a graph isomorphic network, new data obtained after node fusion is used for training an Alzheimer's disease classification task, and then two st</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyj0KwkAQQOE0FqLeYaysAgaRmDIExcrKPoy7k-yQ_WNnVfD0pvAAVq9437LA1n4MsaO0E9AshEKgLIrwwAozBw-aXqwI0GtwlE3Q8JiVhnm5p81cZpQJxoTRAEtwIUXDCjzld0jTulgMaIU2v66K7eV8764lxdCTRFQ0y767VdWxbk71vmkP_5gvJWw-Dw</recordid><startdate>20230314</startdate><enddate>20230314</enddate><creator>ZHONG WEIYING</creator><creator>LI SHUO</creator><creator>XU HUANGE</creator><creator>WANG ZHIQIONG</creator><creator>LIN ZICAN</creator><scope>EVB</scope></search><sort><creationdate>20230314</creationdate><title>Alzheimer's disease classification device and method based on multi-task graph isomorphic network</title><author>ZHONG WEIYING ; LI SHUO ; XU HUANGE ; WANG ZHIQIONG ; LIN ZICAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115798709A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHONG WEIYING</creatorcontrib><creatorcontrib>LI SHUO</creatorcontrib><creatorcontrib>XU HUANGE</creatorcontrib><creatorcontrib>WANG ZHIQIONG</creatorcontrib><creatorcontrib>LIN ZICAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHONG WEIYING</au><au>LI SHUO</au><au>XU HUANGE</au><au>WANG ZHIQIONG</au><au>LIN ZICAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Alzheimer's disease classification device and method based on multi-task graph isomorphic network</title><date>2023-03-14</date><risdate>2023</risdate><abstract>The invention provides an Alzheimer's disease classification device and method based on a multi-task graph isomorphic network, and relates to the technical field of Alzheimer's disease classification. The method comprises the following steps: preprocessing M groups of functional magnetic resonance imaging data of AD patients and normal persons through an fMRI data preprocessing module to obtain M groups of standard functional magnetic resonance imaging; performing time sequence extraction by using the obtained standard function magnetic resonance imaging through a data extraction module, constructing a brain function network, and extracting the characteristics of nodes in the brain function network from the obtained M groups of binary matrixes, in the classification prediction module, node feature fusion is carried out on data obtained from a previous module by using a graph isomorphic network, new data obtained after node fusion is used for training an Alzheimer's disease classification task, and then two st</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115798709A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
title Alzheimer's disease classification device and method based on multi-task graph isomorphic network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A03%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHONG%20WEIYING&rft.date=2023-03-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115798709A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true