Extreme ultraviolet lithography mask multilayer film defect morphology reconstruction method

The invention relates to an extreme ultraviolet lithography blank mask multilayer film defect morphology reconstruction method. According to the method, blank mask multilayer film defect space images in multiple illumination directions are adopted to represent phase information of image missing, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LI SIKUN, WANG XIANGCHAO, ZHENG HANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LI SIKUN
WANG XIANGCHAO
ZHENG HANG
description The invention relates to an extreme ultraviolet lithography blank mask multilayer film defect morphology reconstruction method. According to the method, blank mask multilayer film defect space images in multiple illumination directions are adopted to represent phase information of image missing, and the relation between the multilayer film defect space images and morphology parameters of multilayer film defects is constructed through a trained convolutional neural network model. The method comprises the steps of firstly simulating a space image set of multilayer film defects in different illumination directions to construct training set data, and then inputting the training set data into a convolutional neural network model for training. And inputting an actually measured mask multilayer film defect space image set into the trained model to obtain defect morphology parameters. According to the method, the relationship between the defect space images of the multilayer film in multiple illumination directions a
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115795871A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115795871A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115795871A3</originalsourceid><addsrcrecordid>eNqNjDEKwkAQAK-xEPUP6wMsgoRoKSFiZWUphOOylxzuZY-9jZjfm8IHWE0xw6zNs_moYESYSMW-AxMqUNCBe7FpmCHa_IK42EB2RgEfKEKHHp1CZEkDE_czCDoes8rkNPAIEZdDtzUrbynj7seN2V-bR307YOIWc7IOR9S2vhdFWZ3LU1Vcjv80X5JGPZU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Extreme ultraviolet lithography mask multilayer film defect morphology reconstruction method</title><source>esp@cenet</source><creator>LI SIKUN ; WANG XIANGCHAO ; ZHENG HANG</creator><creatorcontrib>LI SIKUN ; WANG XIANGCHAO ; ZHENG HANG</creatorcontrib><description>The invention relates to an extreme ultraviolet lithography blank mask multilayer film defect morphology reconstruction method. According to the method, blank mask multilayer film defect space images in multiple illumination directions are adopted to represent phase information of image missing, and the relation between the multilayer film defect space images and morphology parameters of multilayer film defects is constructed through a trained convolutional neural network model. The method comprises the steps of firstly simulating a space image set of multilayer film defects in different illumination directions to construct training set data, and then inputting the training set data into a convolutional neural network model for training. And inputting an actually measured mask multilayer film defect space image set into the trained model to obtain defect morphology parameters. According to the method, the relationship between the defect space images of the multilayer film in multiple illumination directions a</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230314&amp;DB=EPODOC&amp;CC=CN&amp;NR=115795871A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230314&amp;DB=EPODOC&amp;CC=CN&amp;NR=115795871A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI SIKUN</creatorcontrib><creatorcontrib>WANG XIANGCHAO</creatorcontrib><creatorcontrib>ZHENG HANG</creatorcontrib><title>Extreme ultraviolet lithography mask multilayer film defect morphology reconstruction method</title><description>The invention relates to an extreme ultraviolet lithography blank mask multilayer film defect morphology reconstruction method. According to the method, blank mask multilayer film defect space images in multiple illumination directions are adopted to represent phase information of image missing, and the relation between the multilayer film defect space images and morphology parameters of multilayer film defects is constructed through a trained convolutional neural network model. The method comprises the steps of firstly simulating a space image set of multilayer film defects in different illumination directions to construct training set data, and then inputting the training set data into a convolutional neural network model for training. And inputting an actually measured mask multilayer film defect space image set into the trained model to obtain defect morphology parameters. According to the method, the relationship between the defect space images of the multilayer film in multiple illumination directions a</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEKwkAQAK-xEPUP6wMsgoRoKSFiZWUphOOylxzuZY-9jZjfm8IHWE0xw6zNs_moYESYSMW-AxMqUNCBe7FpmCHa_IK42EB2RgEfKEKHHp1CZEkDE_czCDoes8rkNPAIEZdDtzUrbynj7seN2V-bR307YOIWc7IOR9S2vhdFWZ3LU1Vcjv80X5JGPZU</recordid><startdate>20230314</startdate><enddate>20230314</enddate><creator>LI SIKUN</creator><creator>WANG XIANGCHAO</creator><creator>ZHENG HANG</creator><scope>EVB</scope></search><sort><creationdate>20230314</creationdate><title>Extreme ultraviolet lithography mask multilayer film defect morphology reconstruction method</title><author>LI SIKUN ; WANG XIANGCHAO ; ZHENG HANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115795871A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LI SIKUN</creatorcontrib><creatorcontrib>WANG XIANGCHAO</creatorcontrib><creatorcontrib>ZHENG HANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI SIKUN</au><au>WANG XIANGCHAO</au><au>ZHENG HANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Extreme ultraviolet lithography mask multilayer film defect morphology reconstruction method</title><date>2023-03-14</date><risdate>2023</risdate><abstract>The invention relates to an extreme ultraviolet lithography blank mask multilayer film defect morphology reconstruction method. According to the method, blank mask multilayer film defect space images in multiple illumination directions are adopted to represent phase information of image missing, and the relation between the multilayer film defect space images and morphology parameters of multilayer film defects is constructed through a trained convolutional neural network model. The method comprises the steps of firstly simulating a space image set of multilayer film defects in different illumination directions to construct training set data, and then inputting the training set data into a convolutional neural network model for training. And inputting an actually measured mask multilayer film defect space image set into the trained model to obtain defect morphology parameters. According to the method, the relationship between the defect space images of the multilayer film in multiple illumination directions a</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115795871A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Extreme ultraviolet lithography mask multilayer film defect morphology reconstruction method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20SIKUN&rft.date=2023-03-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115795871A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true