Camellia oleifera leaf carbon nitrogen ratio estimation method based on canopy hyperspectrum
The invention relates to the technical field of oil-tea camellia leaf carbon-nitrogen ratio estimation, in particular to an oil-tea camellia leaf carbon-nitrogen ratio estimation method based on canopy hyperspectrum. According to the method, a multi-layer feedforward neural network based on error re...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | YAN LIPENG DOU MIN TANG XUEHAI HUANG QINGFENG GAO XIANG WANG AQING KUANG FAN QIAN WENQI FU GENSHEN XU CHENG |
description | The invention relates to the technical field of oil-tea camellia leaf carbon-nitrogen ratio estimation, in particular to an oil-tea camellia leaf carbon-nitrogen ratio estimation method based on canopy hyperspectrum. According to the method, a multi-layer feedforward neural network based on error reverse propagation, namely a BP neural network, is utilized to construct an estimation model of the carbon-nitrogen ratio of the oil-tea camellia leaves and the visible light and near-infrared spectrum region hyperspectrum, and the measured canopy hyperspectrum of the oil-tea camellia to be measured is input into the estimation model to obtain the carbon-nitrogen ratio data of the oil-tea camellia leaves to be measured. According to the invention, the BP neural network algorithm is adopted to train and learn the carbon-nitrogen ratio of the tea-oil tree leaf and the hyperspectral characteristics of the canopy, potential hyperspectral response characteristics influencing the estimation of the carbon-nitrogen ratio of |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115791705A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115791705A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115791705A3</originalsourceid><addsrcrecordid>eNqNijEKAjEUBbexEPUO3wMIBlkWSwmKlZWlsPzNvriBJD8ksdjbq-ABrGYGZtk8NAd475jEw1lkJg-2ZDgPEim6muWJSJmrE0KpLnwtUkCdZKSBC0b6tOEoaaZpTsglwdT8CutmYdkXbH5cNdvL-a6vOyTpURIbRNRe35Rqu6Pq9u3p8M_zBuAoPFs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Camellia oleifera leaf carbon nitrogen ratio estimation method based on canopy hyperspectrum</title><source>esp@cenet</source><creator>YAN LIPENG ; DOU MIN ; TANG XUEHAI ; HUANG QINGFENG ; GAO XIANG ; WANG AQING ; KUANG FAN ; QIAN WENQI ; FU GENSHEN ; XU CHENG</creator><creatorcontrib>YAN LIPENG ; DOU MIN ; TANG XUEHAI ; HUANG QINGFENG ; GAO XIANG ; WANG AQING ; KUANG FAN ; QIAN WENQI ; FU GENSHEN ; XU CHENG</creatorcontrib><description>The invention relates to the technical field of oil-tea camellia leaf carbon-nitrogen ratio estimation, in particular to an oil-tea camellia leaf carbon-nitrogen ratio estimation method based on canopy hyperspectrum. According to the method, a multi-layer feedforward neural network based on error reverse propagation, namely a BP neural network, is utilized to construct an estimation model of the carbon-nitrogen ratio of the oil-tea camellia leaves and the visible light and near-infrared spectrum region hyperspectrum, and the measured canopy hyperspectrum of the oil-tea camellia to be measured is input into the estimation model to obtain the carbon-nitrogen ratio data of the oil-tea camellia leaves to be measured. According to the invention, the BP neural network algorithm is adopted to train and learn the carbon-nitrogen ratio of the tea-oil tree leaf and the hyperspectral characteristics of the canopy, potential hyperspectral response characteristics influencing the estimation of the carbon-nitrogen ratio of</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES ; MEASURING ; PHYSICS ; TESTING</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230314&DB=EPODOC&CC=CN&NR=115791705A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230314&DB=EPODOC&CC=CN&NR=115791705A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YAN LIPENG</creatorcontrib><creatorcontrib>DOU MIN</creatorcontrib><creatorcontrib>TANG XUEHAI</creatorcontrib><creatorcontrib>HUANG QINGFENG</creatorcontrib><creatorcontrib>GAO XIANG</creatorcontrib><creatorcontrib>WANG AQING</creatorcontrib><creatorcontrib>KUANG FAN</creatorcontrib><creatorcontrib>QIAN WENQI</creatorcontrib><creatorcontrib>FU GENSHEN</creatorcontrib><creatorcontrib>XU CHENG</creatorcontrib><title>Camellia oleifera leaf carbon nitrogen ratio estimation method based on canopy hyperspectrum</title><description>The invention relates to the technical field of oil-tea camellia leaf carbon-nitrogen ratio estimation, in particular to an oil-tea camellia leaf carbon-nitrogen ratio estimation method based on canopy hyperspectrum. According to the method, a multi-layer feedforward neural network based on error reverse propagation, namely a BP neural network, is utilized to construct an estimation model of the carbon-nitrogen ratio of the oil-tea camellia leaves and the visible light and near-infrared spectrum region hyperspectrum, and the measured canopy hyperspectrum of the oil-tea camellia to be measured is input into the estimation model to obtain the carbon-nitrogen ratio data of the oil-tea camellia leaves to be measured. According to the invention, the BP neural network algorithm is adopted to train and learn the carbon-nitrogen ratio of the tea-oil tree leaf and the hyperspectral characteristics of the canopy, potential hyperspectral response characteristics influencing the estimation of the carbon-nitrogen ratio of</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijEKAjEUBbexEPUO3wMIBlkWSwmKlZWlsPzNvriBJD8ksdjbq-ABrGYGZtk8NAd475jEw1lkJg-2ZDgPEim6muWJSJmrE0KpLnwtUkCdZKSBC0b6tOEoaaZpTsglwdT8CutmYdkXbH5cNdvL-a6vOyTpURIbRNRe35Rqu6Pq9u3p8M_zBuAoPFs</recordid><startdate>20230314</startdate><enddate>20230314</enddate><creator>YAN LIPENG</creator><creator>DOU MIN</creator><creator>TANG XUEHAI</creator><creator>HUANG QINGFENG</creator><creator>GAO XIANG</creator><creator>WANG AQING</creator><creator>KUANG FAN</creator><creator>QIAN WENQI</creator><creator>FU GENSHEN</creator><creator>XU CHENG</creator><scope>EVB</scope></search><sort><creationdate>20230314</creationdate><title>Camellia oleifera leaf carbon nitrogen ratio estimation method based on canopy hyperspectrum</title><author>YAN LIPENG ; DOU MIN ; TANG XUEHAI ; HUANG QINGFENG ; GAO XIANG ; WANG AQING ; KUANG FAN ; QIAN WENQI ; FU GENSHEN ; XU CHENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115791705A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>YAN LIPENG</creatorcontrib><creatorcontrib>DOU MIN</creatorcontrib><creatorcontrib>TANG XUEHAI</creatorcontrib><creatorcontrib>HUANG QINGFENG</creatorcontrib><creatorcontrib>GAO XIANG</creatorcontrib><creatorcontrib>WANG AQING</creatorcontrib><creatorcontrib>KUANG FAN</creatorcontrib><creatorcontrib>QIAN WENQI</creatorcontrib><creatorcontrib>FU GENSHEN</creatorcontrib><creatorcontrib>XU CHENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YAN LIPENG</au><au>DOU MIN</au><au>TANG XUEHAI</au><au>HUANG QINGFENG</au><au>GAO XIANG</au><au>WANG AQING</au><au>KUANG FAN</au><au>QIAN WENQI</au><au>FU GENSHEN</au><au>XU CHENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Camellia oleifera leaf carbon nitrogen ratio estimation method based on canopy hyperspectrum</title><date>2023-03-14</date><risdate>2023</risdate><abstract>The invention relates to the technical field of oil-tea camellia leaf carbon-nitrogen ratio estimation, in particular to an oil-tea camellia leaf carbon-nitrogen ratio estimation method based on canopy hyperspectrum. According to the method, a multi-layer feedforward neural network based on error reverse propagation, namely a BP neural network, is utilized to construct an estimation model of the carbon-nitrogen ratio of the oil-tea camellia leaves and the visible light and near-infrared spectrum region hyperspectrum, and the measured canopy hyperspectrum of the oil-tea camellia to be measured is input into the estimation model to obtain the carbon-nitrogen ratio data of the oil-tea camellia leaves to be measured. According to the invention, the BP neural network algorithm is adopted to train and learn the carbon-nitrogen ratio of the tea-oil tree leaf and the hyperspectral characteristics of the canopy, potential hyperspectral response characteristics influencing the estimation of the carbon-nitrogen ratio of</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115791705A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES MEASURING PHYSICS TESTING |
title | Camellia oleifera leaf carbon nitrogen ratio estimation method based on canopy hyperspectrum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A28%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YAN%20LIPENG&rft.date=2023-03-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115791705A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |