Camellia oleifera leaf carbon nitrogen ratio estimation method based on canopy hyperspectrum

The invention relates to the technical field of oil-tea camellia leaf carbon-nitrogen ratio estimation, in particular to an oil-tea camellia leaf carbon-nitrogen ratio estimation method based on canopy hyperspectrum. According to the method, a multi-layer feedforward neural network based on error re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YAN LIPENG, DOU MIN, TANG XUEHAI, HUANG QINGFENG, GAO XIANG, WANG AQING, KUANG FAN, QIAN WENQI, FU GENSHEN, XU CHENG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YAN LIPENG
DOU MIN
TANG XUEHAI
HUANG QINGFENG
GAO XIANG
WANG AQING
KUANG FAN
QIAN WENQI
FU GENSHEN
XU CHENG
description The invention relates to the technical field of oil-tea camellia leaf carbon-nitrogen ratio estimation, in particular to an oil-tea camellia leaf carbon-nitrogen ratio estimation method based on canopy hyperspectrum. According to the method, a multi-layer feedforward neural network based on error reverse propagation, namely a BP neural network, is utilized to construct an estimation model of the carbon-nitrogen ratio of the oil-tea camellia leaves and the visible light and near-infrared spectrum region hyperspectrum, and the measured canopy hyperspectrum of the oil-tea camellia to be measured is input into the estimation model to obtain the carbon-nitrogen ratio data of the oil-tea camellia leaves to be measured. According to the invention, the BP neural network algorithm is adopted to train and learn the carbon-nitrogen ratio of the tea-oil tree leaf and the hyperspectral characteristics of the canopy, potential hyperspectral response characteristics influencing the estimation of the carbon-nitrogen ratio of
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115791705A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115791705A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115791705A3</originalsourceid><addsrcrecordid>eNqNijEKAjEUBbexEPUO3wMIBlkWSwmKlZWlsPzNvriBJD8ksdjbq-ABrGYGZtk8NAd475jEw1lkJg-2ZDgPEim6muWJSJmrE0KpLnwtUkCdZKSBC0b6tOEoaaZpTsglwdT8CutmYdkXbH5cNdvL-a6vOyTpURIbRNRe35Rqu6Pq9u3p8M_zBuAoPFs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Camellia oleifera leaf carbon nitrogen ratio estimation method based on canopy hyperspectrum</title><source>esp@cenet</source><creator>YAN LIPENG ; DOU MIN ; TANG XUEHAI ; HUANG QINGFENG ; GAO XIANG ; WANG AQING ; KUANG FAN ; QIAN WENQI ; FU GENSHEN ; XU CHENG</creator><creatorcontrib>YAN LIPENG ; DOU MIN ; TANG XUEHAI ; HUANG QINGFENG ; GAO XIANG ; WANG AQING ; KUANG FAN ; QIAN WENQI ; FU GENSHEN ; XU CHENG</creatorcontrib><description>The invention relates to the technical field of oil-tea camellia leaf carbon-nitrogen ratio estimation, in particular to an oil-tea camellia leaf carbon-nitrogen ratio estimation method based on canopy hyperspectrum. According to the method, a multi-layer feedforward neural network based on error reverse propagation, namely a BP neural network, is utilized to construct an estimation model of the carbon-nitrogen ratio of the oil-tea camellia leaves and the visible light and near-infrared spectrum region hyperspectrum, and the measured canopy hyperspectrum of the oil-tea camellia to be measured is input into the estimation model to obtain the carbon-nitrogen ratio data of the oil-tea camellia leaves to be measured. According to the invention, the BP neural network algorithm is adopted to train and learn the carbon-nitrogen ratio of the tea-oil tree leaf and the hyperspectral characteristics of the canopy, potential hyperspectral response characteristics influencing the estimation of the carbon-nitrogen ratio of</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES ; MEASURING ; PHYSICS ; TESTING</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230314&amp;DB=EPODOC&amp;CC=CN&amp;NR=115791705A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230314&amp;DB=EPODOC&amp;CC=CN&amp;NR=115791705A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YAN LIPENG</creatorcontrib><creatorcontrib>DOU MIN</creatorcontrib><creatorcontrib>TANG XUEHAI</creatorcontrib><creatorcontrib>HUANG QINGFENG</creatorcontrib><creatorcontrib>GAO XIANG</creatorcontrib><creatorcontrib>WANG AQING</creatorcontrib><creatorcontrib>KUANG FAN</creatorcontrib><creatorcontrib>QIAN WENQI</creatorcontrib><creatorcontrib>FU GENSHEN</creatorcontrib><creatorcontrib>XU CHENG</creatorcontrib><title>Camellia oleifera leaf carbon nitrogen ratio estimation method based on canopy hyperspectrum</title><description>The invention relates to the technical field of oil-tea camellia leaf carbon-nitrogen ratio estimation, in particular to an oil-tea camellia leaf carbon-nitrogen ratio estimation method based on canopy hyperspectrum. According to the method, a multi-layer feedforward neural network based on error reverse propagation, namely a BP neural network, is utilized to construct an estimation model of the carbon-nitrogen ratio of the oil-tea camellia leaves and the visible light and near-infrared spectrum region hyperspectrum, and the measured canopy hyperspectrum of the oil-tea camellia to be measured is input into the estimation model to obtain the carbon-nitrogen ratio data of the oil-tea camellia leaves to be measured. According to the invention, the BP neural network algorithm is adopted to train and learn the carbon-nitrogen ratio of the tea-oil tree leaf and the hyperspectral characteristics of the canopy, potential hyperspectral response characteristics influencing the estimation of the carbon-nitrogen ratio of</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijEKAjEUBbexEPUO3wMIBlkWSwmKlZWlsPzNvriBJD8ksdjbq-ABrGYGZtk8NAd475jEw1lkJg-2ZDgPEim6muWJSJmrE0KpLnwtUkCdZKSBC0b6tOEoaaZpTsglwdT8CutmYdkXbH5cNdvL-a6vOyTpURIbRNRe35Rqu6Pq9u3p8M_zBuAoPFs</recordid><startdate>20230314</startdate><enddate>20230314</enddate><creator>YAN LIPENG</creator><creator>DOU MIN</creator><creator>TANG XUEHAI</creator><creator>HUANG QINGFENG</creator><creator>GAO XIANG</creator><creator>WANG AQING</creator><creator>KUANG FAN</creator><creator>QIAN WENQI</creator><creator>FU GENSHEN</creator><creator>XU CHENG</creator><scope>EVB</scope></search><sort><creationdate>20230314</creationdate><title>Camellia oleifera leaf carbon nitrogen ratio estimation method based on canopy hyperspectrum</title><author>YAN LIPENG ; DOU MIN ; TANG XUEHAI ; HUANG QINGFENG ; GAO XIANG ; WANG AQING ; KUANG FAN ; QIAN WENQI ; FU GENSHEN ; XU CHENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115791705A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>YAN LIPENG</creatorcontrib><creatorcontrib>DOU MIN</creatorcontrib><creatorcontrib>TANG XUEHAI</creatorcontrib><creatorcontrib>HUANG QINGFENG</creatorcontrib><creatorcontrib>GAO XIANG</creatorcontrib><creatorcontrib>WANG AQING</creatorcontrib><creatorcontrib>KUANG FAN</creatorcontrib><creatorcontrib>QIAN WENQI</creatorcontrib><creatorcontrib>FU GENSHEN</creatorcontrib><creatorcontrib>XU CHENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YAN LIPENG</au><au>DOU MIN</au><au>TANG XUEHAI</au><au>HUANG QINGFENG</au><au>GAO XIANG</au><au>WANG AQING</au><au>KUANG FAN</au><au>QIAN WENQI</au><au>FU GENSHEN</au><au>XU CHENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Camellia oleifera leaf carbon nitrogen ratio estimation method based on canopy hyperspectrum</title><date>2023-03-14</date><risdate>2023</risdate><abstract>The invention relates to the technical field of oil-tea camellia leaf carbon-nitrogen ratio estimation, in particular to an oil-tea camellia leaf carbon-nitrogen ratio estimation method based on canopy hyperspectrum. According to the method, a multi-layer feedforward neural network based on error reverse propagation, namely a BP neural network, is utilized to construct an estimation model of the carbon-nitrogen ratio of the oil-tea camellia leaves and the visible light and near-infrared spectrum region hyperspectrum, and the measured canopy hyperspectrum of the oil-tea camellia to be measured is input into the estimation model to obtain the carbon-nitrogen ratio data of the oil-tea camellia leaves to be measured. According to the invention, the BP neural network algorithm is adopted to train and learn the carbon-nitrogen ratio of the tea-oil tree leaf and the hyperspectral characteristics of the canopy, potential hyperspectral response characteristics influencing the estimation of the carbon-nitrogen ratio of</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115791705A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES
MEASURING
PHYSICS
TESTING
title Camellia oleifera leaf carbon nitrogen ratio estimation method based on canopy hyperspectrum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A28%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YAN%20LIPENG&rft.date=2023-03-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115791705A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true