Unsupervised pedestrian re-identification method based on shielded key area

The invention provides an unsupervised pedestrian re-identification method based on a shielded key area, which comprises the following steps of: preprocessing an unlabeled picture data set, and inputting the preprocessed picture data set into a network model; constructing a deep learning model, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG CONG, LIN FEI, XIE JIANGFENG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG CONG
LIN FEI
XIE JIANGFENG
description The invention provides an unsupervised pedestrian re-identification method based on a shielded key area, which comprises the following steps of: preprocessing an unlabeled picture data set, and inputting the preprocessed picture data set into a network model; constructing a deep learning model, and using a space attention module to obtain a key area of the picture and shielding the key area; clustering the feature codes of the pictures to obtain pseudo labels of the pictures; constructing a loss function based on a difficult sample updating strategy and cluster updating; obtaining a trained network model according to the change condition of the loss function; and inputting a to-be-identified pedestrian picture and a to-be-identified pedestrian video into the trained network model, and outputting a pedestrian re-identification result. According to the method, the network model can be prevented from excessively paying attention to local features or global features of the image, and the generalization and robust
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115731576A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115731576A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115731576A3</originalsourceid><addsrcrecordid>eNrjZPAOzSsuLUgtKsssTk1RKEhNSS0uKcpMzFMoStXNTEnNK8lMy0xOLMnMz1PITS3JyE9RSEoEqQTyizMyU3NSgOzs1EqFxKLURB4G1rTEnOJUXijNzaDo5hri7KGbWpAfn1pckJicmpdaEu_sZ2hoam4MxGaOxsSoAQCgPzXF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Unsupervised pedestrian re-identification method based on shielded key area</title><source>esp@cenet</source><creator>ZHANG CONG ; LIN FEI ; XIE JIANGFENG</creator><creatorcontrib>ZHANG CONG ; LIN FEI ; XIE JIANGFENG</creatorcontrib><description>The invention provides an unsupervised pedestrian re-identification method based on a shielded key area, which comprises the following steps of: preprocessing an unlabeled picture data set, and inputting the preprocessed picture data set into a network model; constructing a deep learning model, and using a space attention module to obtain a key area of the picture and shielding the key area; clustering the feature codes of the pictures to obtain pseudo labels of the pictures; constructing a loss function based on a difficult sample updating strategy and cluster updating; obtaining a trained network model according to the change condition of the loss function; and inputting a to-be-identified pedestrian picture and a to-be-identified pedestrian video into the trained network model, and outputting a pedestrian re-identification result. According to the method, the network model can be prevented from excessively paying attention to local features or global features of the image, and the generalization and robust</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230303&amp;DB=EPODOC&amp;CC=CN&amp;NR=115731576A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230303&amp;DB=EPODOC&amp;CC=CN&amp;NR=115731576A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG CONG</creatorcontrib><creatorcontrib>LIN FEI</creatorcontrib><creatorcontrib>XIE JIANGFENG</creatorcontrib><title>Unsupervised pedestrian re-identification method based on shielded key area</title><description>The invention provides an unsupervised pedestrian re-identification method based on a shielded key area, which comprises the following steps of: preprocessing an unlabeled picture data set, and inputting the preprocessed picture data set into a network model; constructing a deep learning model, and using a space attention module to obtain a key area of the picture and shielding the key area; clustering the feature codes of the pictures to obtain pseudo labels of the pictures; constructing a loss function based on a difficult sample updating strategy and cluster updating; obtaining a trained network model according to the change condition of the loss function; and inputting a to-be-identified pedestrian picture and a to-be-identified pedestrian video into the trained network model, and outputting a pedestrian re-identification result. According to the method, the network model can be prevented from excessively paying attention to local features or global features of the image, and the generalization and robust</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPAOzSsuLUgtKsssTk1RKEhNSS0uKcpMzFMoStXNTEnNK8lMy0xOLMnMz1PITS3JyE9RSEoEqQTyizMyU3NSgOzs1EqFxKLURB4G1rTEnOJUXijNzaDo5hri7KGbWpAfn1pckJicmpdaEu_sZ2hoam4MxGaOxsSoAQCgPzXF</recordid><startdate>20230303</startdate><enddate>20230303</enddate><creator>ZHANG CONG</creator><creator>LIN FEI</creator><creator>XIE JIANGFENG</creator><scope>EVB</scope></search><sort><creationdate>20230303</creationdate><title>Unsupervised pedestrian re-identification method based on shielded key area</title><author>ZHANG CONG ; LIN FEI ; XIE JIANGFENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115731576A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG CONG</creatorcontrib><creatorcontrib>LIN FEI</creatorcontrib><creatorcontrib>XIE JIANGFENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG CONG</au><au>LIN FEI</au><au>XIE JIANGFENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Unsupervised pedestrian re-identification method based on shielded key area</title><date>2023-03-03</date><risdate>2023</risdate><abstract>The invention provides an unsupervised pedestrian re-identification method based on a shielded key area, which comprises the following steps of: preprocessing an unlabeled picture data set, and inputting the preprocessed picture data set into a network model; constructing a deep learning model, and using a space attention module to obtain a key area of the picture and shielding the key area; clustering the feature codes of the pictures to obtain pseudo labels of the pictures; constructing a loss function based on a difficult sample updating strategy and cluster updating; obtaining a trained network model according to the change condition of the loss function; and inputting a to-be-identified pedestrian picture and a to-be-identified pedestrian video into the trained network model, and outputting a pedestrian re-identification result. According to the method, the network model can be prevented from excessively paying attention to local features or global features of the image, and the generalization and robust</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115731576A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Unsupervised pedestrian re-identification method based on shielded key area
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A30%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20CONG&rft.date=2023-03-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115731576A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true