Retinal vessel segmentation method based on mixed attention mechanism and asymmetric convolution

The invention discloses a retina vessel segmentation method based on a mixed attention mechanism and asymmetric convolution, which comprises the following steps: firstly, acquiring data, dividing a training set and a test set, carrying out image preprocessing on the training set and the test set, ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHEN YI, HAN CHENGRUI, CHEN LAIXIAN, TIAN YIDUO, REN XIANLIN, CAO JIAJIA
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CHEN YI
HAN CHENGRUI
CHEN LAIXIAN
TIAN YIDUO
REN XIANLIN
CAO JIAJIA
description The invention discloses a retina vessel segmentation method based on a mixed attention mechanism and asymmetric convolution, which comprises the following steps: firstly, acquiring data, dividing a training set and a test set, carrying out image preprocessing on the training set and the test set, carrying out data enhancement on images of the training set, extracting patches from the training set and the test set, and carrying out image segmentation on the training set and the test set; and constructing a neural network model integrated with a mixed attention mechanism and asymmetric convolution, training the neural network model by using the training set, verifying a model effect by using the test set, inputting the fundus image to be segmented into the trained neural network model, and outputting a retinal vessel segmentation effect by a neural network. According to the method, the asymmetric convolution kernel is used for reducing a large number of training parameters, the calculation complexity is reduced
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115731242A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115731242A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115731242A3</originalsourceid><addsrcrecordid>eNqNiz0OwjAMhbMwIOAO5gAMaUHMqAIxMSD2YlLTRkqcCpsKbk8qOADT-_ve1FzPpJ4xwEAiFECojcSK6hNDJO1SAzcUamDM_pUNqmbiu7sO2UsE5NzLO-bHwztwiYcUniM0N5M7BqHFT2dmedhfquOK-lST9OiISevqZO1mW9piXezKf5gPOO4-Og</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Retinal vessel segmentation method based on mixed attention mechanism and asymmetric convolution</title><source>esp@cenet</source><creator>CHEN YI ; HAN CHENGRUI ; CHEN LAIXIAN ; TIAN YIDUO ; REN XIANLIN ; CAO JIAJIA</creator><creatorcontrib>CHEN YI ; HAN CHENGRUI ; CHEN LAIXIAN ; TIAN YIDUO ; REN XIANLIN ; CAO JIAJIA</creatorcontrib><description>The invention discloses a retina vessel segmentation method based on a mixed attention mechanism and asymmetric convolution, which comprises the following steps: firstly, acquiring data, dividing a training set and a test set, carrying out image preprocessing on the training set and the test set, carrying out data enhancement on images of the training set, extracting patches from the training set and the test set, and carrying out image segmentation on the training set and the test set; and constructing a neural network model integrated with a mixed attention mechanism and asymmetric convolution, training the neural network model by using the training set, verifying a model effect by using the test set, inputting the fundus image to be segmented into the trained neural network model, and outputting a retinal vessel segmentation effect by a neural network. According to the method, the asymmetric convolution kernel is used for reducing a large number of training parameters, the calculation complexity is reduced</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230303&amp;DB=EPODOC&amp;CC=CN&amp;NR=115731242A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25547,76298</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230303&amp;DB=EPODOC&amp;CC=CN&amp;NR=115731242A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN YI</creatorcontrib><creatorcontrib>HAN CHENGRUI</creatorcontrib><creatorcontrib>CHEN LAIXIAN</creatorcontrib><creatorcontrib>TIAN YIDUO</creatorcontrib><creatorcontrib>REN XIANLIN</creatorcontrib><creatorcontrib>CAO JIAJIA</creatorcontrib><title>Retinal vessel segmentation method based on mixed attention mechanism and asymmetric convolution</title><description>The invention discloses a retina vessel segmentation method based on a mixed attention mechanism and asymmetric convolution, which comprises the following steps: firstly, acquiring data, dividing a training set and a test set, carrying out image preprocessing on the training set and the test set, carrying out data enhancement on images of the training set, extracting patches from the training set and the test set, and carrying out image segmentation on the training set and the test set; and constructing a neural network model integrated with a mixed attention mechanism and asymmetric convolution, training the neural network model by using the training set, verifying a model effect by using the test set, inputting the fundus image to be segmented into the trained neural network model, and outputting a retinal vessel segmentation effect by a neural network. According to the method, the asymmetric convolution kernel is used for reducing a large number of training parameters, the calculation complexity is reduced</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNiz0OwjAMhbMwIOAO5gAMaUHMqAIxMSD2YlLTRkqcCpsKbk8qOADT-_ve1FzPpJ4xwEAiFECojcSK6hNDJO1SAzcUamDM_pUNqmbiu7sO2UsE5NzLO-bHwztwiYcUniM0N5M7BqHFT2dmedhfquOK-lST9OiISevqZO1mW9piXezKf5gPOO4-Og</recordid><startdate>20230303</startdate><enddate>20230303</enddate><creator>CHEN YI</creator><creator>HAN CHENGRUI</creator><creator>CHEN LAIXIAN</creator><creator>TIAN YIDUO</creator><creator>REN XIANLIN</creator><creator>CAO JIAJIA</creator><scope>EVB</scope></search><sort><creationdate>20230303</creationdate><title>Retinal vessel segmentation method based on mixed attention mechanism and asymmetric convolution</title><author>CHEN YI ; HAN CHENGRUI ; CHEN LAIXIAN ; TIAN YIDUO ; REN XIANLIN ; CAO JIAJIA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115731242A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN YI</creatorcontrib><creatorcontrib>HAN CHENGRUI</creatorcontrib><creatorcontrib>CHEN LAIXIAN</creatorcontrib><creatorcontrib>TIAN YIDUO</creatorcontrib><creatorcontrib>REN XIANLIN</creatorcontrib><creatorcontrib>CAO JIAJIA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN YI</au><au>HAN CHENGRUI</au><au>CHEN LAIXIAN</au><au>TIAN YIDUO</au><au>REN XIANLIN</au><au>CAO JIAJIA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Retinal vessel segmentation method based on mixed attention mechanism and asymmetric convolution</title><date>2023-03-03</date><risdate>2023</risdate><abstract>The invention discloses a retina vessel segmentation method based on a mixed attention mechanism and asymmetric convolution, which comprises the following steps: firstly, acquiring data, dividing a training set and a test set, carrying out image preprocessing on the training set and the test set, carrying out data enhancement on images of the training set, extracting patches from the training set and the test set, and carrying out image segmentation on the training set and the test set; and constructing a neural network model integrated with a mixed attention mechanism and asymmetric convolution, training the neural network model by using the training set, verifying a model effect by using the test set, inputting the fundus image to be segmented into the trained neural network model, and outputting a retinal vessel segmentation effect by a neural network. According to the method, the asymmetric convolution kernel is used for reducing a large number of training parameters, the calculation complexity is reduced</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115731242A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Retinal vessel segmentation method based on mixed attention mechanism and asymmetric convolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A38%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20YI&rft.date=2023-03-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115731242A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true