Cross-modal unsupervised domain adaptive medical image segmentation method

The invention discloses a cross-modal unsupervised domain adaptive medical image segmentation method, which is characterized in that image alignment and feature alignment between a source mode and a target mode are enhanced by adopting consistency regularization and uncertainty estimation, cross-mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YIN MINZHI, SUN SHILIANG, ZONG DAOMING, MAO LIANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YIN MINZHI
SUN SHILIANG
ZONG DAOMING
MAO LIANG
description The invention discloses a cross-modal unsupervised domain adaptive medical image segmentation method, which is characterized in that image alignment and feature alignment between a source mode and a target mode are enhanced by adopting consistency regularization and uncertainty estimation, cross-modal unsupervised domain adaptive medical image segmentation is realized, and the method specifically comprises the following steps: 1) data preprocessing; 2) performing iterative training and parameter updating; 3) obtaining a segmentation model; 4) obtaining a segmentation result; and 5) evaluating a segmentation result. Compared with the prior art, the method has the advantages that the common features between the two modals can be learned under the condition that no target domain annotation is used, a good segmentation effect is achieved on the source modal image and the target modal image, the domain migration problem in the medical image is effectively solved, and the predicted segmentation image is more robust
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115731178A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115731178A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115731178A3</originalsourceid><addsrcrecordid>eNqNyjEKwkAQRuE0FqLeYT1AiiVIbGVRxMLKPgyZ3ziQ3Vkym5zfFB7A6hXv21aPMKlZHZVpdHOyOWNaxMCONZIkR0y5yAIXwdKvSCINcIYhIhUqomld5aO8rzZvGg2HX3fV8XZ9hXuNrB0sU4-E0oWn96e28b49X5p_zBdtkTWt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Cross-modal unsupervised domain adaptive medical image segmentation method</title><source>esp@cenet</source><creator>YIN MINZHI ; SUN SHILIANG ; ZONG DAOMING ; MAO LIANG</creator><creatorcontrib>YIN MINZHI ; SUN SHILIANG ; ZONG DAOMING ; MAO LIANG</creatorcontrib><description>The invention discloses a cross-modal unsupervised domain adaptive medical image segmentation method, which is characterized in that image alignment and feature alignment between a source mode and a target mode are enhanced by adopting consistency regularization and uncertainty estimation, cross-modal unsupervised domain adaptive medical image segmentation is realized, and the method specifically comprises the following steps: 1) data preprocessing; 2) performing iterative training and parameter updating; 3) obtaining a segmentation model; 4) obtaining a segmentation result; and 5) evaluating a segmentation result. Compared with the prior art, the method has the advantages that the common features between the two modals can be learned under the condition that no target domain annotation is used, a good segmentation effect is achieved on the source modal image and the target modal image, the domain migration problem in the medical image is effectively solved, and the predicted segmentation image is more robust</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230303&amp;DB=EPODOC&amp;CC=CN&amp;NR=115731178A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230303&amp;DB=EPODOC&amp;CC=CN&amp;NR=115731178A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YIN MINZHI</creatorcontrib><creatorcontrib>SUN SHILIANG</creatorcontrib><creatorcontrib>ZONG DAOMING</creatorcontrib><creatorcontrib>MAO LIANG</creatorcontrib><title>Cross-modal unsupervised domain adaptive medical image segmentation method</title><description>The invention discloses a cross-modal unsupervised domain adaptive medical image segmentation method, which is characterized in that image alignment and feature alignment between a source mode and a target mode are enhanced by adopting consistency regularization and uncertainty estimation, cross-modal unsupervised domain adaptive medical image segmentation is realized, and the method specifically comprises the following steps: 1) data preprocessing; 2) performing iterative training and parameter updating; 3) obtaining a segmentation model; 4) obtaining a segmentation result; and 5) evaluating a segmentation result. Compared with the prior art, the method has the advantages that the common features between the two modals can be learned under the condition that no target domain annotation is used, a good segmentation effect is achieved on the source modal image and the target modal image, the domain migration problem in the medical image is effectively solved, and the predicted segmentation image is more robust</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEKwkAQRuE0FqLeYT1AiiVIbGVRxMLKPgyZ3ziQ3Vkym5zfFB7A6hXv21aPMKlZHZVpdHOyOWNaxMCONZIkR0y5yAIXwdKvSCINcIYhIhUqomld5aO8rzZvGg2HX3fV8XZ9hXuNrB0sU4-E0oWn96e28b49X5p_zBdtkTWt</recordid><startdate>20230303</startdate><enddate>20230303</enddate><creator>YIN MINZHI</creator><creator>SUN SHILIANG</creator><creator>ZONG DAOMING</creator><creator>MAO LIANG</creator><scope>EVB</scope></search><sort><creationdate>20230303</creationdate><title>Cross-modal unsupervised domain adaptive medical image segmentation method</title><author>YIN MINZHI ; SUN SHILIANG ; ZONG DAOMING ; MAO LIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115731178A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>YIN MINZHI</creatorcontrib><creatorcontrib>SUN SHILIANG</creatorcontrib><creatorcontrib>ZONG DAOMING</creatorcontrib><creatorcontrib>MAO LIANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YIN MINZHI</au><au>SUN SHILIANG</au><au>ZONG DAOMING</au><au>MAO LIANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Cross-modal unsupervised domain adaptive medical image segmentation method</title><date>2023-03-03</date><risdate>2023</risdate><abstract>The invention discloses a cross-modal unsupervised domain adaptive medical image segmentation method, which is characterized in that image alignment and feature alignment between a source mode and a target mode are enhanced by adopting consistency regularization and uncertainty estimation, cross-modal unsupervised domain adaptive medical image segmentation is realized, and the method specifically comprises the following steps: 1) data preprocessing; 2) performing iterative training and parameter updating; 3) obtaining a segmentation model; 4) obtaining a segmentation result; and 5) evaluating a segmentation result. Compared with the prior art, the method has the advantages that the common features between the two modals can be learned under the condition that no target domain annotation is used, a good segmentation effect is achieved on the source modal image and the target modal image, the domain migration problem in the medical image is effectively solved, and the predicted segmentation image is more robust</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115731178A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Cross-modal unsupervised domain adaptive medical image segmentation method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YIN%20MINZHI&rft.date=2023-03-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115731178A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true