Distributed clean energy electric quantity prediction method under dual-carbon target

The invention discloses a distributed clean energy electric quantity prediction method under a dual-carbon target, aims at solving the problem of how to predict the distributed clean energy electric quantity, and belongs to the technical field of clean energy. The method comprises the following step...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XIANG WEN, LI TONGQING, SHEN MIAOZHE, FU YAO, SONG LEI, JIANG YAN, WANG ZHAOJING, GAO HAOXIANG, LI JIN, YUAN BAIHUI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XIANG WEN
LI TONGQING
SHEN MIAOZHE
FU YAO
SONG LEI
JIANG YAN
WANG ZHAOJING
GAO HAOXIANG
LI JIN
YUAN BAIHUI
description The invention discloses a distributed clean energy electric quantity prediction method under a dual-carbon target, aims at solving the problem of how to predict the distributed clean energy electric quantity, and belongs to the technical field of clean energy. The method comprises the following steps: S1, acquiring historical data of distributed clean energy in past 12 hours, wherein the historical data comprises operating parameters and photovoltaic power of the distributed clean energy; s2, extracting features of the historical data, performing random forest feature screening on the extracted features, and constructing a training set and a test set; and S3, establishing an LSTM multi-step prediction model, training the LSTM multi-step prediction model by using the training set, testing the LSTM multi-step prediction model by using the test set after the training is completed, if the accuracy rate reaches the standard, outputting the LSTM multi-step prediction model for predicting the photovoltaic power in t
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115730634A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115730634A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115730634A3</originalsourceid><addsrcrecordid>eNqNjTsOwjAQBd1QIOAOywEiEYVPjQKIigrqaLN-BEvGDs66yO1JwQGoppiRZm4eJzdocm1WWBIPDoSA1I0ED5mM0CdzUKcj9QnWiboY6A19RUs5WCSymX0hnNpJKKcOujSzJ_sBqx8XZn053-trgT42GHqWaaJNfSvL3aHa7Kvtsfqn-QI2lznR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Distributed clean energy electric quantity prediction method under dual-carbon target</title><source>esp@cenet</source><creator>XIANG WEN ; LI TONGQING ; SHEN MIAOZHE ; FU YAO ; SONG LEI ; JIANG YAN ; WANG ZHAOJING ; GAO HAOXIANG ; LI JIN ; YUAN BAIHUI</creator><creatorcontrib>XIANG WEN ; LI TONGQING ; SHEN MIAOZHE ; FU YAO ; SONG LEI ; JIANG YAN ; WANG ZHAOJING ; GAO HAOXIANG ; LI JIN ; YUAN BAIHUI</creatorcontrib><description>The invention discloses a distributed clean energy electric quantity prediction method under a dual-carbon target, aims at solving the problem of how to predict the distributed clean energy electric quantity, and belongs to the technical field of clean energy. The method comprises the following steps: S1, acquiring historical data of distributed clean energy in past 12 hours, wherein the historical data comprises operating parameters and photovoltaic power of the distributed clean energy; s2, extracting features of the historical data, performing random forest feature screening on the extracted features, and constructing a training set and a test set; and S3, establishing an LSTM multi-step prediction model, training the LSTM multi-step prediction model by using the training set, testing the LSTM multi-step prediction model by using the test set after the training is completed, if the accuracy rate reaches the standard, outputting the LSTM multi-step prediction model for predicting the photovoltaic power in t</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230303&amp;DB=EPODOC&amp;CC=CN&amp;NR=115730634A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230303&amp;DB=EPODOC&amp;CC=CN&amp;NR=115730634A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XIANG WEN</creatorcontrib><creatorcontrib>LI TONGQING</creatorcontrib><creatorcontrib>SHEN MIAOZHE</creatorcontrib><creatorcontrib>FU YAO</creatorcontrib><creatorcontrib>SONG LEI</creatorcontrib><creatorcontrib>JIANG YAN</creatorcontrib><creatorcontrib>WANG ZHAOJING</creatorcontrib><creatorcontrib>GAO HAOXIANG</creatorcontrib><creatorcontrib>LI JIN</creatorcontrib><creatorcontrib>YUAN BAIHUI</creatorcontrib><title>Distributed clean energy electric quantity prediction method under dual-carbon target</title><description>The invention discloses a distributed clean energy electric quantity prediction method under a dual-carbon target, aims at solving the problem of how to predict the distributed clean energy electric quantity, and belongs to the technical field of clean energy. The method comprises the following steps: S1, acquiring historical data of distributed clean energy in past 12 hours, wherein the historical data comprises operating parameters and photovoltaic power of the distributed clean energy; s2, extracting features of the historical data, performing random forest feature screening on the extracted features, and constructing a training set and a test set; and S3, establishing an LSTM multi-step prediction model, training the LSTM multi-step prediction model by using the training set, testing the LSTM multi-step prediction model by using the test set after the training is completed, if the accuracy rate reaches the standard, outputting the LSTM multi-step prediction model for predicting the photovoltaic power in t</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjTsOwjAQBd1QIOAOywEiEYVPjQKIigrqaLN-BEvGDs66yO1JwQGoppiRZm4eJzdocm1WWBIPDoSA1I0ED5mM0CdzUKcj9QnWiboY6A19RUs5WCSymX0hnNpJKKcOujSzJ_sBqx8XZn053-trgT42GHqWaaJNfSvL3aHa7Kvtsfqn-QI2lznR</recordid><startdate>20230303</startdate><enddate>20230303</enddate><creator>XIANG WEN</creator><creator>LI TONGQING</creator><creator>SHEN MIAOZHE</creator><creator>FU YAO</creator><creator>SONG LEI</creator><creator>JIANG YAN</creator><creator>WANG ZHAOJING</creator><creator>GAO HAOXIANG</creator><creator>LI JIN</creator><creator>YUAN BAIHUI</creator><scope>EVB</scope></search><sort><creationdate>20230303</creationdate><title>Distributed clean energy electric quantity prediction method under dual-carbon target</title><author>XIANG WEN ; LI TONGQING ; SHEN MIAOZHE ; FU YAO ; SONG LEI ; JIANG YAN ; WANG ZHAOJING ; GAO HAOXIANG ; LI JIN ; YUAN BAIHUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115730634A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>XIANG WEN</creatorcontrib><creatorcontrib>LI TONGQING</creatorcontrib><creatorcontrib>SHEN MIAOZHE</creatorcontrib><creatorcontrib>FU YAO</creatorcontrib><creatorcontrib>SONG LEI</creatorcontrib><creatorcontrib>JIANG YAN</creatorcontrib><creatorcontrib>WANG ZHAOJING</creatorcontrib><creatorcontrib>GAO HAOXIANG</creatorcontrib><creatorcontrib>LI JIN</creatorcontrib><creatorcontrib>YUAN BAIHUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XIANG WEN</au><au>LI TONGQING</au><au>SHEN MIAOZHE</au><au>FU YAO</au><au>SONG LEI</au><au>JIANG YAN</au><au>WANG ZHAOJING</au><au>GAO HAOXIANG</au><au>LI JIN</au><au>YUAN BAIHUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Distributed clean energy electric quantity prediction method under dual-carbon target</title><date>2023-03-03</date><risdate>2023</risdate><abstract>The invention discloses a distributed clean energy electric quantity prediction method under a dual-carbon target, aims at solving the problem of how to predict the distributed clean energy electric quantity, and belongs to the technical field of clean energy. The method comprises the following steps: S1, acquiring historical data of distributed clean energy in past 12 hours, wherein the historical data comprises operating parameters and photovoltaic power of the distributed clean energy; s2, extracting features of the historical data, performing random forest feature screening on the extracted features, and constructing a training set and a test set; and S3, establishing an LSTM multi-step prediction model, training the LSTM multi-step prediction model by using the training set, testing the LSTM multi-step prediction model by using the test set after the training is completed, if the accuracy rate reaches the standard, outputting the LSTM multi-step prediction model for predicting the photovoltaic power in t</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115730634A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Distributed clean energy electric quantity prediction method under dual-carbon target
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XIANG%20WEN&rft.date=2023-03-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115730634A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true