Monitoring network card model training method, application and system thereof and electronic equipment
The invention provides a monitoring network card model training method, application and system thereof and electronic equipment, and the method comprises the steps: obtaining an expelling historical record set, carrying out the calculation to generate a verification set matrix, and constructing a tr...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | QIU SHUHONG MAI FUQUAN LIU JUNJING LIN DONG LIU HANLIANG HUANG MINXING LONG BUYUN |
description | The invention provides a monitoring network card model training method, application and system thereof and electronic equipment, and the method comprises the steps: obtaining an expelling historical record set, carrying out the calculation to generate a verification set matrix, and constructing a training set through the verification set matrix; the optimized training set is input into a convolutional neural network, training is carried out in a stochastic gradient descent mode combined with a back propagation algorithm, a trained parameter adjustment model is obtained, the parameter adjustment model is used for dynamically calculating a soft expulsion threshold value and a hard expulsion threshold value according to the data condition on a current node cluster machine, and the soft expulsion threshold value and the hard expulsion threshold value are obtained. When the network card flow meets the soft expelling threshold value or the hard expelling threshold value, respectively executing soft expelling and ha |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115714692A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115714692A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115714692A3</originalsourceid><addsrcrecordid>eNqNjTsOwjAQRNNQIOAOSw9F-IoSRSAaqOijlb1JLOxdYy9C3J6AOADVSPNGb4ZFcxZ2KslxC0z6lHQDg8lCEEseNKHjDwukndgZYIzeGVQnDMgW8isrBdCOEknzrciT0dRrDdD94WIg1nExaNBnmvxyVEyPh2t1mlOUmnJEQ_17XV3Kcr0tV5vdYr_8Z_MGyyhARQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Monitoring network card model training method, application and system thereof and electronic equipment</title><source>esp@cenet</source><creator>QIU SHUHONG ; MAI FUQUAN ; LIU JUNJING ; LIN DONG ; LIU HANLIANG ; HUANG MINXING ; LONG BUYUN</creator><creatorcontrib>QIU SHUHONG ; MAI FUQUAN ; LIU JUNJING ; LIN DONG ; LIU HANLIANG ; HUANG MINXING ; LONG BUYUN</creatorcontrib><description>The invention provides a monitoring network card model training method, application and system thereof and electronic equipment, and the method comprises the steps: obtaining an expelling historical record set, carrying out the calculation to generate a verification set matrix, and constructing a training set through the verification set matrix; the optimized training set is input into a convolutional neural network, training is carried out in a stochastic gradient descent mode combined with a back propagation algorithm, a trained parameter adjustment model is obtained, the parameter adjustment model is used for dynamically calculating a soft expulsion threshold value and a hard expulsion threshold value according to the data condition on a current node cluster machine, and the soft expulsion threshold value and the hard expulsion threshold value are obtained. When the network card flow meets the soft expelling threshold value or the hard expelling threshold value, respectively executing soft expelling and ha</description><language>chi ; eng</language><subject>ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230224&DB=EPODOC&CC=CN&NR=115714692A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230224&DB=EPODOC&CC=CN&NR=115714692A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>QIU SHUHONG</creatorcontrib><creatorcontrib>MAI FUQUAN</creatorcontrib><creatorcontrib>LIU JUNJING</creatorcontrib><creatorcontrib>LIN DONG</creatorcontrib><creatorcontrib>LIU HANLIANG</creatorcontrib><creatorcontrib>HUANG MINXING</creatorcontrib><creatorcontrib>LONG BUYUN</creatorcontrib><title>Monitoring network card model training method, application and system thereof and electronic equipment</title><description>The invention provides a monitoring network card model training method, application and system thereof and electronic equipment, and the method comprises the steps: obtaining an expelling historical record set, carrying out the calculation to generate a verification set matrix, and constructing a training set through the verification set matrix; the optimized training set is input into a convolutional neural network, training is carried out in a stochastic gradient descent mode combined with a back propagation algorithm, a trained parameter adjustment model is obtained, the parameter adjustment model is used for dynamically calculating a soft expulsion threshold value and a hard expulsion threshold value according to the data condition on a current node cluster machine, and the soft expulsion threshold value and the hard expulsion threshold value are obtained. When the network card flow meets the soft expelling threshold value or the hard expelling threshold value, respectively executing soft expelling and ha</description><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjTsOwjAQRNNQIOAOSw9F-IoSRSAaqOijlb1JLOxdYy9C3J6AOADVSPNGb4ZFcxZ2KslxC0z6lHQDg8lCEEseNKHjDwukndgZYIzeGVQnDMgW8isrBdCOEknzrciT0dRrDdD94WIg1nExaNBnmvxyVEyPh2t1mlOUmnJEQ_17XV3Kcr0tV5vdYr_8Z_MGyyhARQ</recordid><startdate>20230224</startdate><enddate>20230224</enddate><creator>QIU SHUHONG</creator><creator>MAI FUQUAN</creator><creator>LIU JUNJING</creator><creator>LIN DONG</creator><creator>LIU HANLIANG</creator><creator>HUANG MINXING</creator><creator>LONG BUYUN</creator><scope>EVB</scope></search><sort><creationdate>20230224</creationdate><title>Monitoring network card model training method, application and system thereof and electronic equipment</title><author>QIU SHUHONG ; MAI FUQUAN ; LIU JUNJING ; LIN DONG ; LIU HANLIANG ; HUANG MINXING ; LONG BUYUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115714692A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>QIU SHUHONG</creatorcontrib><creatorcontrib>MAI FUQUAN</creatorcontrib><creatorcontrib>LIU JUNJING</creatorcontrib><creatorcontrib>LIN DONG</creatorcontrib><creatorcontrib>LIU HANLIANG</creatorcontrib><creatorcontrib>HUANG MINXING</creatorcontrib><creatorcontrib>LONG BUYUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>QIU SHUHONG</au><au>MAI FUQUAN</au><au>LIU JUNJING</au><au>LIN DONG</au><au>LIU HANLIANG</au><au>HUANG MINXING</au><au>LONG BUYUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Monitoring network card model training method, application and system thereof and electronic equipment</title><date>2023-02-24</date><risdate>2023</risdate><abstract>The invention provides a monitoring network card model training method, application and system thereof and electronic equipment, and the method comprises the steps: obtaining an expelling historical record set, carrying out the calculation to generate a verification set matrix, and constructing a training set through the verification set matrix; the optimized training set is input into a convolutional neural network, training is carried out in a stochastic gradient descent mode combined with a back propagation algorithm, a trained parameter adjustment model is obtained, the parameter adjustment model is used for dynamically calculating a soft expulsion threshold value and a hard expulsion threshold value according to the data condition on a current node cluster machine, and the soft expulsion threshold value and the hard expulsion threshold value are obtained. When the network card flow meets the soft expelling threshold value or the hard expelling threshold value, respectively executing soft expelling and ha</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115714692A |
source | esp@cenet |
subjects | ELECTRIC COMMUNICATION TECHNIQUE ELECTRICITY TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION |
title | Monitoring network card model training method, application and system thereof and electronic equipment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A08%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=QIU%20SHUHONG&rft.date=2023-02-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115714692A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |