Techniques for reducing interference in images

Techniques for reducing interferent objects in a first image are presented herein. The system may access the mask and the first image. Interferent objects in the first image may be within the region of interest and may have pixels with initial attributes. In addition, the system may process the firs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: JACOBS DAVID ERIC, LIBA OLEG, ABERMAN KENNETH, KNANN YUVAL PAUL
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator JACOBS DAVID ERIC
LIBA OLEG
ABERMAN KENNETH
KNANN YUVAL PAUL
description Techniques for reducing interferent objects in a first image are presented herein. The system may access the mask and the first image. Interferent objects in the first image may be within the region of interest and may have pixels with initial attributes. In addition, the system may process the first image and the mask using the machine-learned repair model to generate a repair image. Pixels of an interferent object in a repair image may have repair attributes in a chroma channel. Further, the system may determine a palette transform based on a comparison of the first image and the restored image. The transformation attribute may be different from the repair attribute. Further, the system may process the first image to generate a recolored image. Pixels in the recolored image may have recolored properties that are based on transformation properties of the palette transformation. 在本文呈现用于减少第一图像中的干扰物对象的技术。系统可以访问掩膜和第一图像。第一图像中的干扰物对象可以在感兴趣区域内,并且可以具有带有初始属性的像素。另外,该系统可以使用经机器学习的修复模型处理第一图像和掩膜,以生成修复图像。修复图像中的干扰物对象的像素可以在色度
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115689914A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115689914A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115689914A3</originalsourceid><addsrcrecordid>eNrjZNALSU3OyMssLE0tVkjLL1IoSk0pTc7MS1fIzCtJLUpLLUrNS04FchQycxPTU4t5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakm8s5-hoamZhaWloYmjMTFqAA9JKsU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Techniques for reducing interference in images</title><source>esp@cenet</source><creator>JACOBS DAVID ERIC ; LIBA OLEG ; ABERMAN KENNETH ; KNANN YUVAL PAUL</creator><creatorcontrib>JACOBS DAVID ERIC ; LIBA OLEG ; ABERMAN KENNETH ; KNANN YUVAL PAUL</creatorcontrib><description>Techniques for reducing interferent objects in a first image are presented herein. The system may access the mask and the first image. Interferent objects in the first image may be within the region of interest and may have pixels with initial attributes. In addition, the system may process the first image and the mask using the machine-learned repair model to generate a repair image. Pixels of an interferent object in a repair image may have repair attributes in a chroma channel. Further, the system may determine a palette transform based on a comparison of the first image and the restored image. The transformation attribute may be different from the repair attribute. Further, the system may process the first image to generate a recolored image. Pixels in the recolored image may have recolored properties that are based on transformation properties of the palette transformation. 在本文呈现用于减少第一图像中的干扰物对象的技术。系统可以访问掩膜和第一图像。第一图像中的干扰物对象可以在感兴趣区域内,并且可以具有带有初始属性的像素。另外,该系统可以使用经机器学习的修复模型处理第一图像和掩膜,以生成修复图像。修复图像中的干扰物对象的像素可以在色度</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230203&amp;DB=EPODOC&amp;CC=CN&amp;NR=115689914A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230203&amp;DB=EPODOC&amp;CC=CN&amp;NR=115689914A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>JACOBS DAVID ERIC</creatorcontrib><creatorcontrib>LIBA OLEG</creatorcontrib><creatorcontrib>ABERMAN KENNETH</creatorcontrib><creatorcontrib>KNANN YUVAL PAUL</creatorcontrib><title>Techniques for reducing interference in images</title><description>Techniques for reducing interferent objects in a first image are presented herein. The system may access the mask and the first image. Interferent objects in the first image may be within the region of interest and may have pixels with initial attributes. In addition, the system may process the first image and the mask using the machine-learned repair model to generate a repair image. Pixels of an interferent object in a repair image may have repair attributes in a chroma channel. Further, the system may determine a palette transform based on a comparison of the first image and the restored image. The transformation attribute may be different from the repair attribute. Further, the system may process the first image to generate a recolored image. Pixels in the recolored image may have recolored properties that are based on transformation properties of the palette transformation. 在本文呈现用于减少第一图像中的干扰物对象的技术。系统可以访问掩膜和第一图像。第一图像中的干扰物对象可以在感兴趣区域内,并且可以具有带有初始属性的像素。另外,该系统可以使用经机器学习的修复模型处理第一图像和掩膜,以生成修复图像。修复图像中的干扰物对象的像素可以在色度</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNALSU3OyMssLE0tVkjLL1IoSk0pTc7MS1fIzCtJLUpLLUrNS04FchQycxPTU4t5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakm8s5-hoamZhaWloYmjMTFqAA9JKsU</recordid><startdate>20230203</startdate><enddate>20230203</enddate><creator>JACOBS DAVID ERIC</creator><creator>LIBA OLEG</creator><creator>ABERMAN KENNETH</creator><creator>KNANN YUVAL PAUL</creator><scope>EVB</scope></search><sort><creationdate>20230203</creationdate><title>Techniques for reducing interference in images</title><author>JACOBS DAVID ERIC ; LIBA OLEG ; ABERMAN KENNETH ; KNANN YUVAL PAUL</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115689914A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>JACOBS DAVID ERIC</creatorcontrib><creatorcontrib>LIBA OLEG</creatorcontrib><creatorcontrib>ABERMAN KENNETH</creatorcontrib><creatorcontrib>KNANN YUVAL PAUL</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>JACOBS DAVID ERIC</au><au>LIBA OLEG</au><au>ABERMAN KENNETH</au><au>KNANN YUVAL PAUL</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Techniques for reducing interference in images</title><date>2023-02-03</date><risdate>2023</risdate><abstract>Techniques for reducing interferent objects in a first image are presented herein. The system may access the mask and the first image. Interferent objects in the first image may be within the region of interest and may have pixels with initial attributes. In addition, the system may process the first image and the mask using the machine-learned repair model to generate a repair image. Pixels of an interferent object in a repair image may have repair attributes in a chroma channel. Further, the system may determine a palette transform based on a comparison of the first image and the restored image. The transformation attribute may be different from the repair attribute. Further, the system may process the first image to generate a recolored image. Pixels in the recolored image may have recolored properties that are based on transformation properties of the palette transformation. 在本文呈现用于减少第一图像中的干扰物对象的技术。系统可以访问掩膜和第一图像。第一图像中的干扰物对象可以在感兴趣区域内,并且可以具有带有初始属性的像素。另外,该系统可以使用经机器学习的修复模型处理第一图像和掩膜,以生成修复图像。修复图像中的干扰物对象的像素可以在色度</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115689914A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Techniques for reducing interference in images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A07%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=JACOBS%20DAVID%20ERIC&rft.date=2023-02-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115689914A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true