Whole vehicle logistics scheduling optimization method based on improved genetic algorithm

The invention discloses a whole vehicle logistics scheduling optimization method based on an improved genetic algorithm. The method comprises the steps of obtaining order information, transport vehicle information, commercial vehicle information and parking lot information; determining a function op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG LIJIE, XIONG JUNXING, SHAO CHAOFEI, LIU JIANSHENG, YUAN BIN, YANG ZAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG LIJIE
XIONG JUNXING
SHAO CHAOFEI
LIU JIANSHENG
YUAN BIN
YANG ZAN
description The invention discloses a whole vehicle logistics scheduling optimization method based on an improved genetic algorithm. The method comprises the steps of obtaining order information, transport vehicle information, commercial vehicle information and parking lot information; determining a function optimization target and constraint conditions; setting a population size, a crossover probability, a mutation probability and an iteration termination condition; performing population initialization and gene coding: adopting double-chromosome natural number coding, namely order chromosome coding and transport vehicle chromosome coding; dynamically decoding the code and calculating a function fitness value; and repeating the following operations: selection operation, crossover operation, mutation operation and local optimization operation until a termination condition is reached, and outputting an optimal scheme. Through the improved genetic algorithm, greedy algorithm initial population optimization, double chromosom
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115689247A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115689247A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115689247A3</originalsourceid><addsrcrecordid>eNqNiz0KAjEQRtNYiHqH8QAW699qKYtiZSUINkvMjslAkgk7cQtPbwQPYPW-D94bq_vNsUcY0JEp9GxJMhkBMQ67l6dogVOmQG-diSMEzI47eGjBDsqnkHoeyrYYsZSgveWesgtTNXpqLzj7caLmp-O1OS8wcYuStPkWbXOpqs12t1-u68PqH-cDm8g7_Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Whole vehicle logistics scheduling optimization method based on improved genetic algorithm</title><source>esp@cenet</source><creator>ZHANG LIJIE ; XIONG JUNXING ; SHAO CHAOFEI ; LIU JIANSHENG ; YUAN BIN ; YANG ZAN</creator><creatorcontrib>ZHANG LIJIE ; XIONG JUNXING ; SHAO CHAOFEI ; LIU JIANSHENG ; YUAN BIN ; YANG ZAN</creatorcontrib><description>The invention discloses a whole vehicle logistics scheduling optimization method based on an improved genetic algorithm. The method comprises the steps of obtaining order information, transport vehicle information, commercial vehicle information and parking lot information; determining a function optimization target and constraint conditions; setting a population size, a crossover probability, a mutation probability and an iteration termination condition; performing population initialization and gene coding: adopting double-chromosome natural number coding, namely order chromosome coding and transport vehicle chromosome coding; dynamically decoding the code and calculating a function fitness value; and repeating the following operations: selection operation, crossover operation, mutation operation and local optimization operation until a termination condition is reached, and outputting an optimal scheme. Through the improved genetic algorithm, greedy algorithm initial population optimization, double chromosom</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230203&amp;DB=EPODOC&amp;CC=CN&amp;NR=115689247A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230203&amp;DB=EPODOC&amp;CC=CN&amp;NR=115689247A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG LIJIE</creatorcontrib><creatorcontrib>XIONG JUNXING</creatorcontrib><creatorcontrib>SHAO CHAOFEI</creatorcontrib><creatorcontrib>LIU JIANSHENG</creatorcontrib><creatorcontrib>YUAN BIN</creatorcontrib><creatorcontrib>YANG ZAN</creatorcontrib><title>Whole vehicle logistics scheduling optimization method based on improved genetic algorithm</title><description>The invention discloses a whole vehicle logistics scheduling optimization method based on an improved genetic algorithm. The method comprises the steps of obtaining order information, transport vehicle information, commercial vehicle information and parking lot information; determining a function optimization target and constraint conditions; setting a population size, a crossover probability, a mutation probability and an iteration termination condition; performing population initialization and gene coding: adopting double-chromosome natural number coding, namely order chromosome coding and transport vehicle chromosome coding; dynamically decoding the code and calculating a function fitness value; and repeating the following operations: selection operation, crossover operation, mutation operation and local optimization operation until a termination condition is reached, and outputting an optimal scheme. Through the improved genetic algorithm, greedy algorithm initial population optimization, double chromosom</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNiz0KAjEQRtNYiHqH8QAW699qKYtiZSUINkvMjslAkgk7cQtPbwQPYPW-D94bq_vNsUcY0JEp9GxJMhkBMQ67l6dogVOmQG-diSMEzI47eGjBDsqnkHoeyrYYsZSgveWesgtTNXpqLzj7caLmp-O1OS8wcYuStPkWbXOpqs12t1-u68PqH-cDm8g7_Q</recordid><startdate>20230203</startdate><enddate>20230203</enddate><creator>ZHANG LIJIE</creator><creator>XIONG JUNXING</creator><creator>SHAO CHAOFEI</creator><creator>LIU JIANSHENG</creator><creator>YUAN BIN</creator><creator>YANG ZAN</creator><scope>EVB</scope></search><sort><creationdate>20230203</creationdate><title>Whole vehicle logistics scheduling optimization method based on improved genetic algorithm</title><author>ZHANG LIJIE ; XIONG JUNXING ; SHAO CHAOFEI ; LIU JIANSHENG ; YUAN BIN ; YANG ZAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115689247A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG LIJIE</creatorcontrib><creatorcontrib>XIONG JUNXING</creatorcontrib><creatorcontrib>SHAO CHAOFEI</creatorcontrib><creatorcontrib>LIU JIANSHENG</creatorcontrib><creatorcontrib>YUAN BIN</creatorcontrib><creatorcontrib>YANG ZAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG LIJIE</au><au>XIONG JUNXING</au><au>SHAO CHAOFEI</au><au>LIU JIANSHENG</au><au>YUAN BIN</au><au>YANG ZAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Whole vehicle logistics scheduling optimization method based on improved genetic algorithm</title><date>2023-02-03</date><risdate>2023</risdate><abstract>The invention discloses a whole vehicle logistics scheduling optimization method based on an improved genetic algorithm. The method comprises the steps of obtaining order information, transport vehicle information, commercial vehicle information and parking lot information; determining a function optimization target and constraint conditions; setting a population size, a crossover probability, a mutation probability and an iteration termination condition; performing population initialization and gene coding: adopting double-chromosome natural number coding, namely order chromosome coding and transport vehicle chromosome coding; dynamically decoding the code and calculating a function fitness value; and repeating the following operations: selection operation, crossover operation, mutation operation and local optimization operation until a termination condition is reached, and outputting an optimal scheme. Through the improved genetic algorithm, greedy algorithm initial population optimization, double chromosom</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115689247A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Whole vehicle logistics scheduling optimization method based on improved genetic algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20LIJIE&rft.date=2023-02-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115689247A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true