Railway vehicle running gear anomaly detection method based on symbol regression and generative adversarial network
The invention discloses a railway vehicle running gear anomaly detection method based on symbolic regression and generative adversarial network, comprising the following steps: acquiring sensing data of a railway vehicle running gear, and storing the sensing data in a database; establishing a struct...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WAN KEQIAN YANG QINWEN DENG YANGDONG XIAO GANG LIU XIAOLAN HUANG FANLING NI YUFEI |
description | The invention discloses a railway vehicle running gear anomaly detection method based on symbolic regression and generative adversarial network, comprising the following steps: acquiring sensing data of a railway vehicle running gear, and storing the sensing data in a database; establishing a structure learning model and a generative adversarial network model, and superposing results of the structure learning model and the generative adversarial network model as health baseline data; acquiring sensing data of the running gear of the railway vehicle in the target time period as real-time monitoring data, and calculating a real-time deviation according to the real-time monitoring data and the corresponding health baseline data; and calculating an average error of all the real-time deviations in the target time period, and if the average error is greater than a preset alarm threshold, judging that an abnormality occurs. According to the invention, accurate mechanism analysis can be carried out on the structural |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115688036A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115688036A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115688036A3</originalsourceid><addsrcrecordid>eNqNi8EKgkAURd20iOofXh8QJJK0DSlatYj28nRuOjTOyHuT4t9n0Ae0Ohw4Z5nona0beaIBra0dSN7eW99QAxZiHzp2ExlE1NEGTx1iGwxVrDA0u05dFRwJGoHqt2Bv5tlDONoBxGaAKItlRx5xDPJaJ4snO8Xmx1WyvZwfxXWHPpTQnut5j2VxS9NDfjzus_yU_dN8AKTwRVg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Railway vehicle running gear anomaly detection method based on symbol regression and generative adversarial network</title><source>esp@cenet</source><creator>WAN KEQIAN ; YANG QINWEN ; DENG YANGDONG ; XIAO GANG ; LIU XIAOLAN ; HUANG FANLING ; NI YUFEI</creator><creatorcontrib>WAN KEQIAN ; YANG QINWEN ; DENG YANGDONG ; XIAO GANG ; LIU XIAOLAN ; HUANG FANLING ; NI YUFEI</creatorcontrib><description>The invention discloses a railway vehicle running gear anomaly detection method based on symbolic regression and generative adversarial network, comprising the following steps: acquiring sensing data of a railway vehicle running gear, and storing the sensing data in a database; establishing a structure learning model and a generative adversarial network model, and superposing results of the structure learning model and the generative adversarial network model as health baseline data; acquiring sensing data of the running gear of the railway vehicle in the target time period as real-time monitoring data, and calculating a real-time deviation according to the real-time monitoring data and the corresponding health baseline data; and calculating an average error of all the real-time deviations in the target time period, and if the average error is greater than a preset alarm threshold, judging that an abnormality occurs. According to the invention, accurate mechanism analysis can be carried out on the structural</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230203&DB=EPODOC&CC=CN&NR=115688036A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230203&DB=EPODOC&CC=CN&NR=115688036A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WAN KEQIAN</creatorcontrib><creatorcontrib>YANG QINWEN</creatorcontrib><creatorcontrib>DENG YANGDONG</creatorcontrib><creatorcontrib>XIAO GANG</creatorcontrib><creatorcontrib>LIU XIAOLAN</creatorcontrib><creatorcontrib>HUANG FANLING</creatorcontrib><creatorcontrib>NI YUFEI</creatorcontrib><title>Railway vehicle running gear anomaly detection method based on symbol regression and generative adversarial network</title><description>The invention discloses a railway vehicle running gear anomaly detection method based on symbolic regression and generative adversarial network, comprising the following steps: acquiring sensing data of a railway vehicle running gear, and storing the sensing data in a database; establishing a structure learning model and a generative adversarial network model, and superposing results of the structure learning model and the generative adversarial network model as health baseline data; acquiring sensing data of the running gear of the railway vehicle in the target time period as real-time monitoring data, and calculating a real-time deviation according to the real-time monitoring data and the corresponding health baseline data; and calculating an average error of all the real-time deviations in the target time period, and if the average error is greater than a preset alarm threshold, judging that an abnormality occurs. According to the invention, accurate mechanism analysis can be carried out on the structural</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi8EKgkAURd20iOofXh8QJJK0DSlatYj28nRuOjTOyHuT4t9n0Ae0Ohw4Z5nona0beaIBra0dSN7eW99QAxZiHzp2ExlE1NEGTx1iGwxVrDA0u05dFRwJGoHqt2Bv5tlDONoBxGaAKItlRx5xDPJaJ4snO8Xmx1WyvZwfxXWHPpTQnut5j2VxS9NDfjzus_yU_dN8AKTwRVg</recordid><startdate>20230203</startdate><enddate>20230203</enddate><creator>WAN KEQIAN</creator><creator>YANG QINWEN</creator><creator>DENG YANGDONG</creator><creator>XIAO GANG</creator><creator>LIU XIAOLAN</creator><creator>HUANG FANLING</creator><creator>NI YUFEI</creator><scope>EVB</scope></search><sort><creationdate>20230203</creationdate><title>Railway vehicle running gear anomaly detection method based on symbol regression and generative adversarial network</title><author>WAN KEQIAN ; YANG QINWEN ; DENG YANGDONG ; XIAO GANG ; LIU XIAOLAN ; HUANG FANLING ; NI YUFEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115688036A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WAN KEQIAN</creatorcontrib><creatorcontrib>YANG QINWEN</creatorcontrib><creatorcontrib>DENG YANGDONG</creatorcontrib><creatorcontrib>XIAO GANG</creatorcontrib><creatorcontrib>LIU XIAOLAN</creatorcontrib><creatorcontrib>HUANG FANLING</creatorcontrib><creatorcontrib>NI YUFEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WAN KEQIAN</au><au>YANG QINWEN</au><au>DENG YANGDONG</au><au>XIAO GANG</au><au>LIU XIAOLAN</au><au>HUANG FANLING</au><au>NI YUFEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Railway vehicle running gear anomaly detection method based on symbol regression and generative adversarial network</title><date>2023-02-03</date><risdate>2023</risdate><abstract>The invention discloses a railway vehicle running gear anomaly detection method based on symbolic regression and generative adversarial network, comprising the following steps: acquiring sensing data of a railway vehicle running gear, and storing the sensing data in a database; establishing a structure learning model and a generative adversarial network model, and superposing results of the structure learning model and the generative adversarial network model as health baseline data; acquiring sensing data of the running gear of the railway vehicle in the target time period as real-time monitoring data, and calculating a real-time deviation according to the real-time monitoring data and the corresponding health baseline data; and calculating an average error of all the real-time deviations in the target time period, and if the average error is greater than a preset alarm threshold, judging that an abnormality occurs. According to the invention, accurate mechanism analysis can be carried out on the structural</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115688036A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Railway vehicle running gear anomaly detection method based on symbol regression and generative adversarial network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A26%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WAN%20KEQIAN&rft.date=2023-02-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115688036A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |