Railway vehicle running gear anomaly detection method based on symbol regression and generative adversarial network

The invention discloses a railway vehicle running gear anomaly detection method based on symbolic regression and generative adversarial network, comprising the following steps: acquiring sensing data of a railway vehicle running gear, and storing the sensing data in a database; establishing a struct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WAN KEQIAN, YANG QINWEN, DENG YANGDONG, XIAO GANG, LIU XIAOLAN, HUANG FANLING, NI YUFEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WAN KEQIAN
YANG QINWEN
DENG YANGDONG
XIAO GANG
LIU XIAOLAN
HUANG FANLING
NI YUFEI
description The invention discloses a railway vehicle running gear anomaly detection method based on symbolic regression and generative adversarial network, comprising the following steps: acquiring sensing data of a railway vehicle running gear, and storing the sensing data in a database; establishing a structure learning model and a generative adversarial network model, and superposing results of the structure learning model and the generative adversarial network model as health baseline data; acquiring sensing data of the running gear of the railway vehicle in the target time period as real-time monitoring data, and calculating a real-time deviation according to the real-time monitoring data and the corresponding health baseline data; and calculating an average error of all the real-time deviations in the target time period, and if the average error is greater than a preset alarm threshold, judging that an abnormality occurs. According to the invention, accurate mechanism analysis can be carried out on the structural
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115688036A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115688036A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115688036A3</originalsourceid><addsrcrecordid>eNqNi8EKgkAURd20iOofXh8QJJK0DSlatYj28nRuOjTOyHuT4t9n0Ae0Ohw4Z5nona0beaIBra0dSN7eW99QAxZiHzp2ExlE1NEGTx1iGwxVrDA0u05dFRwJGoHqt2Bv5tlDONoBxGaAKItlRx5xDPJaJ4snO8Xmx1WyvZwfxXWHPpTQnut5j2VxS9NDfjzus_yU_dN8AKTwRVg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Railway vehicle running gear anomaly detection method based on symbol regression and generative adversarial network</title><source>esp@cenet</source><creator>WAN KEQIAN ; YANG QINWEN ; DENG YANGDONG ; XIAO GANG ; LIU XIAOLAN ; HUANG FANLING ; NI YUFEI</creator><creatorcontrib>WAN KEQIAN ; YANG QINWEN ; DENG YANGDONG ; XIAO GANG ; LIU XIAOLAN ; HUANG FANLING ; NI YUFEI</creatorcontrib><description>The invention discloses a railway vehicle running gear anomaly detection method based on symbolic regression and generative adversarial network, comprising the following steps: acquiring sensing data of a railway vehicle running gear, and storing the sensing data in a database; establishing a structure learning model and a generative adversarial network model, and superposing results of the structure learning model and the generative adversarial network model as health baseline data; acquiring sensing data of the running gear of the railway vehicle in the target time period as real-time monitoring data, and calculating a real-time deviation according to the real-time monitoring data and the corresponding health baseline data; and calculating an average error of all the real-time deviations in the target time period, and if the average error is greater than a preset alarm threshold, judging that an abnormality occurs. According to the invention, accurate mechanism analysis can be carried out on the structural</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230203&amp;DB=EPODOC&amp;CC=CN&amp;NR=115688036A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230203&amp;DB=EPODOC&amp;CC=CN&amp;NR=115688036A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WAN KEQIAN</creatorcontrib><creatorcontrib>YANG QINWEN</creatorcontrib><creatorcontrib>DENG YANGDONG</creatorcontrib><creatorcontrib>XIAO GANG</creatorcontrib><creatorcontrib>LIU XIAOLAN</creatorcontrib><creatorcontrib>HUANG FANLING</creatorcontrib><creatorcontrib>NI YUFEI</creatorcontrib><title>Railway vehicle running gear anomaly detection method based on symbol regression and generative adversarial network</title><description>The invention discloses a railway vehicle running gear anomaly detection method based on symbolic regression and generative adversarial network, comprising the following steps: acquiring sensing data of a railway vehicle running gear, and storing the sensing data in a database; establishing a structure learning model and a generative adversarial network model, and superposing results of the structure learning model and the generative adversarial network model as health baseline data; acquiring sensing data of the running gear of the railway vehicle in the target time period as real-time monitoring data, and calculating a real-time deviation according to the real-time monitoring data and the corresponding health baseline data; and calculating an average error of all the real-time deviations in the target time period, and if the average error is greater than a preset alarm threshold, judging that an abnormality occurs. According to the invention, accurate mechanism analysis can be carried out on the structural</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi8EKgkAURd20iOofXh8QJJK0DSlatYj28nRuOjTOyHuT4t9n0Ae0Ohw4Z5nona0beaIBra0dSN7eW99QAxZiHzp2ExlE1NEGTx1iGwxVrDA0u05dFRwJGoHqt2Bv5tlDONoBxGaAKItlRx5xDPJaJ4snO8Xmx1WyvZwfxXWHPpTQnut5j2VxS9NDfjzus_yU_dN8AKTwRVg</recordid><startdate>20230203</startdate><enddate>20230203</enddate><creator>WAN KEQIAN</creator><creator>YANG QINWEN</creator><creator>DENG YANGDONG</creator><creator>XIAO GANG</creator><creator>LIU XIAOLAN</creator><creator>HUANG FANLING</creator><creator>NI YUFEI</creator><scope>EVB</scope></search><sort><creationdate>20230203</creationdate><title>Railway vehicle running gear anomaly detection method based on symbol regression and generative adversarial network</title><author>WAN KEQIAN ; YANG QINWEN ; DENG YANGDONG ; XIAO GANG ; LIU XIAOLAN ; HUANG FANLING ; NI YUFEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115688036A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WAN KEQIAN</creatorcontrib><creatorcontrib>YANG QINWEN</creatorcontrib><creatorcontrib>DENG YANGDONG</creatorcontrib><creatorcontrib>XIAO GANG</creatorcontrib><creatorcontrib>LIU XIAOLAN</creatorcontrib><creatorcontrib>HUANG FANLING</creatorcontrib><creatorcontrib>NI YUFEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WAN KEQIAN</au><au>YANG QINWEN</au><au>DENG YANGDONG</au><au>XIAO GANG</au><au>LIU XIAOLAN</au><au>HUANG FANLING</au><au>NI YUFEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Railway vehicle running gear anomaly detection method based on symbol regression and generative adversarial network</title><date>2023-02-03</date><risdate>2023</risdate><abstract>The invention discloses a railway vehicle running gear anomaly detection method based on symbolic regression and generative adversarial network, comprising the following steps: acquiring sensing data of a railway vehicle running gear, and storing the sensing data in a database; establishing a structure learning model and a generative adversarial network model, and superposing results of the structure learning model and the generative adversarial network model as health baseline data; acquiring sensing data of the running gear of the railway vehicle in the target time period as real-time monitoring data, and calculating a real-time deviation according to the real-time monitoring data and the corresponding health baseline data; and calculating an average error of all the real-time deviations in the target time period, and if the average error is greater than a preset alarm threshold, judging that an abnormality occurs. According to the invention, accurate mechanism analysis can be carried out on the structural</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115688036A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Railway vehicle running gear anomaly detection method based on symbol regression and generative adversarial network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A26%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WAN%20KEQIAN&rft.date=2023-02-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115688036A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true