Non-intrusive network fault diagnosis and prediction method in cloud native environment

The invention particularly relates to a non-intrusive network fault diagnosis and prediction method in a cloud native environment. According to the non-intrusive network fault diagnosis and prediction method in the cloud native environment, an eBPF-based non-intrusive cloud native application securi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: FANG YADONG, LI JINGYAO, LENG JING, WANG XINRU, GAO CHUANJI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator FANG YADONG
LI JINGYAO
LENG JING
WANG XINRU
GAO CHUANJI
description The invention particularly relates to a non-intrusive network fault diagnosis and prediction method in a cloud native environment. According to the non-intrusive network fault diagnosis and prediction method in the cloud native environment, an eBPF-based non-intrusive cloud native application security monitoring technology is adopted, an application monitoring-oriented kernel instrumentation and event triggering mechanism is combined, and network data are collected by setting a network performance monitoring data collector and are preprocessed; and a cloud native environment network fault diagnosis and prediction model based on the Bayesian network is established, monitoring data are analyzed, and diagnosis and prediction of network faults are realized. According to the non-intrusive network fault diagnosis and prediction method in the cloud native environment, network faults possibly occurring in the cloud native environment can be predicted in real time, the occurring network faults can be diagnosed and ana
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115664930A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115664930A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115664930A3</originalsourceid><addsrcrecordid>eNqNjUEKwjAQAHvxIOof1gcULNWCRymKp54EjyUkW7uY7oZkU7-vgg_wNJcZZlncO-GSWGNONCMw6kviEwaTvYIj82BJlMCwgxDRkVUShgl1FAfEYL1kB2z0WyPPFIUnZF0Xi8H4hJsfV8X2cr611xKD9JiCsfh59W1XVYem2R_r3an-x3kDxXE6uw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Non-intrusive network fault diagnosis and prediction method in cloud native environment</title><source>esp@cenet</source><creator>FANG YADONG ; LI JINGYAO ; LENG JING ; WANG XINRU ; GAO CHUANJI</creator><creatorcontrib>FANG YADONG ; LI JINGYAO ; LENG JING ; WANG XINRU ; GAO CHUANJI</creatorcontrib><description>The invention particularly relates to a non-intrusive network fault diagnosis and prediction method in a cloud native environment. According to the non-intrusive network fault diagnosis and prediction method in the cloud native environment, an eBPF-based non-intrusive cloud native application security monitoring technology is adopted, an application monitoring-oriented kernel instrumentation and event triggering mechanism is combined, and network data are collected by setting a network performance monitoring data collector and are preprocessed; and a cloud native environment network fault diagnosis and prediction model based on the Bayesian network is established, monitoring data are analyzed, and diagnosis and prediction of network faults are realized. According to the non-intrusive network fault diagnosis and prediction method in the cloud native environment, network faults possibly occurring in the cloud native environment can be predicted in real time, the occurring network faults can be diagnosed and ana</description><language>chi ; eng</language><subject>ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230131&amp;DB=EPODOC&amp;CC=CN&amp;NR=115664930A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230131&amp;DB=EPODOC&amp;CC=CN&amp;NR=115664930A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FANG YADONG</creatorcontrib><creatorcontrib>LI JINGYAO</creatorcontrib><creatorcontrib>LENG JING</creatorcontrib><creatorcontrib>WANG XINRU</creatorcontrib><creatorcontrib>GAO CHUANJI</creatorcontrib><title>Non-intrusive network fault diagnosis and prediction method in cloud native environment</title><description>The invention particularly relates to a non-intrusive network fault diagnosis and prediction method in a cloud native environment. According to the non-intrusive network fault diagnosis and prediction method in the cloud native environment, an eBPF-based non-intrusive cloud native application security monitoring technology is adopted, an application monitoring-oriented kernel instrumentation and event triggering mechanism is combined, and network data are collected by setting a network performance monitoring data collector and are preprocessed; and a cloud native environment network fault diagnosis and prediction model based on the Bayesian network is established, monitoring data are analyzed, and diagnosis and prediction of network faults are realized. According to the non-intrusive network fault diagnosis and prediction method in the cloud native environment, network faults possibly occurring in the cloud native environment can be predicted in real time, the occurring network faults can be diagnosed and ana</description><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjUEKwjAQAHvxIOof1gcULNWCRymKp54EjyUkW7uY7oZkU7-vgg_wNJcZZlncO-GSWGNONCMw6kviEwaTvYIj82BJlMCwgxDRkVUShgl1FAfEYL1kB2z0WyPPFIUnZF0Xi8H4hJsfV8X2cr611xKD9JiCsfh59W1XVYem2R_r3an-x3kDxXE6uw</recordid><startdate>20230131</startdate><enddate>20230131</enddate><creator>FANG YADONG</creator><creator>LI JINGYAO</creator><creator>LENG JING</creator><creator>WANG XINRU</creator><creator>GAO CHUANJI</creator><scope>EVB</scope></search><sort><creationdate>20230131</creationdate><title>Non-intrusive network fault diagnosis and prediction method in cloud native environment</title><author>FANG YADONG ; LI JINGYAO ; LENG JING ; WANG XINRU ; GAO CHUANJI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115664930A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>FANG YADONG</creatorcontrib><creatorcontrib>LI JINGYAO</creatorcontrib><creatorcontrib>LENG JING</creatorcontrib><creatorcontrib>WANG XINRU</creatorcontrib><creatorcontrib>GAO CHUANJI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FANG YADONG</au><au>LI JINGYAO</au><au>LENG JING</au><au>WANG XINRU</au><au>GAO CHUANJI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Non-intrusive network fault diagnosis and prediction method in cloud native environment</title><date>2023-01-31</date><risdate>2023</risdate><abstract>The invention particularly relates to a non-intrusive network fault diagnosis and prediction method in a cloud native environment. According to the non-intrusive network fault diagnosis and prediction method in the cloud native environment, an eBPF-based non-intrusive cloud native application security monitoring technology is adopted, an application monitoring-oriented kernel instrumentation and event triggering mechanism is combined, and network data are collected by setting a network performance monitoring data collector and are preprocessed; and a cloud native environment network fault diagnosis and prediction model based on the Bayesian network is established, monitoring data are analyzed, and diagnosis and prediction of network faults are realized. According to the non-intrusive network fault diagnosis and prediction method in the cloud native environment, network faults possibly occurring in the cloud native environment can be predicted in real time, the occurring network faults can be diagnosed and ana</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115664930A
source esp@cenet
subjects ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Non-intrusive network fault diagnosis and prediction method in cloud native environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T04%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FANG%20YADONG&rft.date=2023-01-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115664930A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true