Rotating target detection method based on improved YOLOv5

The invention discloses a rotating target detection method based on an improved YOLOv5. The method has certain universality in the rotating target detection direction, and the patent takes remote sensing image target detection as an explanatory case. For the problem that excessive background informa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: JIA HAITAO, CHANG LE, LENG GENG, LUO XIN, WANG SHUCHEN, REGAZA ADUGNA TESFAYE, XU WENBO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator JIA HAITAO
CHANG LE
LENG GENG
LUO XIN
WANG SHUCHEN
REGAZA ADUGNA TESFAYE
XU WENBO
description The invention discloses a rotating target detection method based on an improved YOLOv5. The method has certain universality in the rotating target detection direction, and the patent takes remote sensing image target detection as an explanatory case. For the problem that excessive background information is extracted in the feature extraction process, an attention mechanism is introduced and improved, and a convolution kernel with a smaller receptive field is adopted to give attention to a model space according to the features of a target in a remote sensing image. A residual module adopts a C3 structure to construct a deeper network, SPP is used for fusion of different scale features, an angle classification thought and a CSL label are introduced, and a Gaussian function is adopted as a window function, so that the model has the capability of learning an angle distance. 本发明公开了一种基于改进的YOLOv5的旋转目标检测方法。该发明在旋转目标检测方向上具有一定的通用性,该专利以遥感图像目标检测为说明案例。对于特征提取过程中提取到过多背景信息的问题,本文引入了注意力机制,并且对其做出改进,针对遥感图像中目标的特点,采用拥有更小感受野的卷积核来赋予模
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115661679A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115661679A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115661679A3</originalsourceid><addsrcrecordid>eNrjZLAMyi9JLMnMS1coSSxKTy1RSEktSU0uyczPU8hNLcnIT1FISixOTVEA8jNzC4ryy4DsSH8f_zJTHgbWtMSc4lReKM3NoOjmGuLsoZtakB-fWlyQmJyal1oS7-xnaGhqZmZoZm7paEyMGgAjMC5T</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Rotating target detection method based on improved YOLOv5</title><source>esp@cenet</source><creator>JIA HAITAO ; CHANG LE ; LENG GENG ; LUO XIN ; WANG SHUCHEN ; REGAZA ADUGNA TESFAYE ; XU WENBO</creator><creatorcontrib>JIA HAITAO ; CHANG LE ; LENG GENG ; LUO XIN ; WANG SHUCHEN ; REGAZA ADUGNA TESFAYE ; XU WENBO</creatorcontrib><description>The invention discloses a rotating target detection method based on an improved YOLOv5. The method has certain universality in the rotating target detection direction, and the patent takes remote sensing image target detection as an explanatory case. For the problem that excessive background information is extracted in the feature extraction process, an attention mechanism is introduced and improved, and a convolution kernel with a smaller receptive field is adopted to give attention to a model space according to the features of a target in a remote sensing image. A residual module adopts a C3 structure to construct a deeper network, SPP is used for fusion of different scale features, an angle classification thought and a CSL label are introduced, and a Gaussian function is adopted as a window function, so that the model has the capability of learning an angle distance. 本发明公开了一种基于改进的YOLOv5的旋转目标检测方法。该发明在旋转目标检测方向上具有一定的通用性,该专利以遥感图像目标检测为说明案例。对于特征提取过程中提取到过多背景信息的问题,本文引入了注意力机制,并且对其做出改进,针对遥感图像中目标的特点,采用拥有更小感受野的卷积核来赋予模</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230131&amp;DB=EPODOC&amp;CC=CN&amp;NR=115661679A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230131&amp;DB=EPODOC&amp;CC=CN&amp;NR=115661679A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>JIA HAITAO</creatorcontrib><creatorcontrib>CHANG LE</creatorcontrib><creatorcontrib>LENG GENG</creatorcontrib><creatorcontrib>LUO XIN</creatorcontrib><creatorcontrib>WANG SHUCHEN</creatorcontrib><creatorcontrib>REGAZA ADUGNA TESFAYE</creatorcontrib><creatorcontrib>XU WENBO</creatorcontrib><title>Rotating target detection method based on improved YOLOv5</title><description>The invention discloses a rotating target detection method based on an improved YOLOv5. The method has certain universality in the rotating target detection direction, and the patent takes remote sensing image target detection as an explanatory case. For the problem that excessive background information is extracted in the feature extraction process, an attention mechanism is introduced and improved, and a convolution kernel with a smaller receptive field is adopted to give attention to a model space according to the features of a target in a remote sensing image. A residual module adopts a C3 structure to construct a deeper network, SPP is used for fusion of different scale features, an angle classification thought and a CSL label are introduced, and a Gaussian function is adopted as a window function, so that the model has the capability of learning an angle distance. 本发明公开了一种基于改进的YOLOv5的旋转目标检测方法。该发明在旋转目标检测方向上具有一定的通用性,该专利以遥感图像目标检测为说明案例。对于特征提取过程中提取到过多背景信息的问题,本文引入了注意力机制,并且对其做出改进,针对遥感图像中目标的特点,采用拥有更小感受野的卷积核来赋予模</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAMyi9JLMnMS1coSSxKTy1RSEktSU0uyczPU8hNLcnIT1FISixOTVEA8jNzC4ryy4DsSH8f_zJTHgbWtMSc4lReKM3NoOjmGuLsoZtakB-fWlyQmJyal1oS7-xnaGhqZmZoZm7paEyMGgAjMC5T</recordid><startdate>20230131</startdate><enddate>20230131</enddate><creator>JIA HAITAO</creator><creator>CHANG LE</creator><creator>LENG GENG</creator><creator>LUO XIN</creator><creator>WANG SHUCHEN</creator><creator>REGAZA ADUGNA TESFAYE</creator><creator>XU WENBO</creator><scope>EVB</scope></search><sort><creationdate>20230131</creationdate><title>Rotating target detection method based on improved YOLOv5</title><author>JIA HAITAO ; CHANG LE ; LENG GENG ; LUO XIN ; WANG SHUCHEN ; REGAZA ADUGNA TESFAYE ; XU WENBO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115661679A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>JIA HAITAO</creatorcontrib><creatorcontrib>CHANG LE</creatorcontrib><creatorcontrib>LENG GENG</creatorcontrib><creatorcontrib>LUO XIN</creatorcontrib><creatorcontrib>WANG SHUCHEN</creatorcontrib><creatorcontrib>REGAZA ADUGNA TESFAYE</creatorcontrib><creatorcontrib>XU WENBO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>JIA HAITAO</au><au>CHANG LE</au><au>LENG GENG</au><au>LUO XIN</au><au>WANG SHUCHEN</au><au>REGAZA ADUGNA TESFAYE</au><au>XU WENBO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Rotating target detection method based on improved YOLOv5</title><date>2023-01-31</date><risdate>2023</risdate><abstract>The invention discloses a rotating target detection method based on an improved YOLOv5. The method has certain universality in the rotating target detection direction, and the patent takes remote sensing image target detection as an explanatory case. For the problem that excessive background information is extracted in the feature extraction process, an attention mechanism is introduced and improved, and a convolution kernel with a smaller receptive field is adopted to give attention to a model space according to the features of a target in a remote sensing image. A residual module adopts a C3 structure to construct a deeper network, SPP is used for fusion of different scale features, an angle classification thought and a CSL label are introduced, and a Gaussian function is adopted as a window function, so that the model has the capability of learning an angle distance. 本发明公开了一种基于改进的YOLOv5的旋转目标检测方法。该发明在旋转目标检测方向上具有一定的通用性,该专利以遥感图像目标检测为说明案例。对于特征提取过程中提取到过多背景信息的问题,本文引入了注意力机制,并且对其做出改进,针对遥感图像中目标的特点,采用拥有更小感受野的卷积核来赋予模</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115661679A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Rotating target detection method based on improved YOLOv5
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A30%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=JIA%20HAITAO&rft.date=2023-01-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115661679A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true