Intelligent long-term runoff forecasting method of machine learning model based on grid units

The invention discloses an intelligent long-term runoff forecasting method of a machine learning model based on grid units. The intelligent long-term runoff forecasting method takes the theory and method of machine learning as the basis of modeling. Comprising the steps of raster data processing, fa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHU HAIBO, WANG ZHUOQI, WANG ZONGHAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CHU HAIBO
WANG ZHUOQI
WANG ZONGHAN
description The invention discloses an intelligent long-term runoff forecasting method of a machine learning model based on grid units. The intelligent long-term runoff forecasting method takes the theory and method of machine learning as the basis of modeling. Comprising the steps of raster data processing, factor hysteresis analysis, machine learning model modeling, parameter optimization and model verification. The corresponding method comprises the steps of grid conversion, utilization of a time delay cross-correlation method, a machine learning model and a verification method. According to the medium-and-long-term runoff forecasting method provided by the invention, the determination coefficients are used for evaluation, and the determination coefficient values can reach 0.8 or above and reach the second-class precision or above of the hydrological information forecasting specification (GB/T222482-2008). 本发明公开了一种基于栅格单元的机器学习模型的智能长期径流预报方法,本发明以机器学习的理论和方法作为建模的基础。包括栅格数据处理、因子滞后性分析、机器学习模型建模、参数优化、模型验证。相应的方法包括栅格转化、利用时间滞后互相关法
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115659794A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115659794A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115659794A3</originalsourceid><addsrcrecordid>eNqNyjEKwkAQRuE0FqLeYTxAiqBRUkpQtLGylbAm_24WdmfC7uT-ingAq1d8b1k8b6wIwTuwUhB2pSJFSjOLtWQloTdZPTuK0FEGEkvR9KNnUIBJ_CUZEOhlMj7O5JIfaGaveV0srAkZm19XxfZyfrTXEpN0yJPpwdCuvVdVfaibY7M_7f553hNgPFw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Intelligent long-term runoff forecasting method of machine learning model based on grid units</title><source>esp@cenet</source><creator>CHU HAIBO ; WANG ZHUOQI ; WANG ZONGHAN</creator><creatorcontrib>CHU HAIBO ; WANG ZHUOQI ; WANG ZONGHAN</creatorcontrib><description>The invention discloses an intelligent long-term runoff forecasting method of a machine learning model based on grid units. The intelligent long-term runoff forecasting method takes the theory and method of machine learning as the basis of modeling. Comprising the steps of raster data processing, factor hysteresis analysis, machine learning model modeling, parameter optimization and model verification. The corresponding method comprises the steps of grid conversion, utilization of a time delay cross-correlation method, a machine learning model and a verification method. According to the medium-and-long-term runoff forecasting method provided by the invention, the determination coefficients are used for evaluation, and the determination coefficient values can reach 0.8 or above and reach the second-class precision or above of the hydrological information forecasting specification (GB/T222482-2008). 本发明公开了一种基于栅格单元的机器学习模型的智能长期径流预报方法,本发明以机器学习的理论和方法作为建模的基础。包括栅格数据处理、因子滞后性分析、机器学习模型建模、参数优化、模型验证。相应的方法包括栅格转化、利用时间滞后互相关法</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230131&amp;DB=EPODOC&amp;CC=CN&amp;NR=115659794A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25547,76298</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230131&amp;DB=EPODOC&amp;CC=CN&amp;NR=115659794A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHU HAIBO</creatorcontrib><creatorcontrib>WANG ZHUOQI</creatorcontrib><creatorcontrib>WANG ZONGHAN</creatorcontrib><title>Intelligent long-term runoff forecasting method of machine learning model based on grid units</title><description>The invention discloses an intelligent long-term runoff forecasting method of a machine learning model based on grid units. The intelligent long-term runoff forecasting method takes the theory and method of machine learning as the basis of modeling. Comprising the steps of raster data processing, factor hysteresis analysis, machine learning model modeling, parameter optimization and model verification. The corresponding method comprises the steps of grid conversion, utilization of a time delay cross-correlation method, a machine learning model and a verification method. According to the medium-and-long-term runoff forecasting method provided by the invention, the determination coefficients are used for evaluation, and the determination coefficient values can reach 0.8 or above and reach the second-class precision or above of the hydrological information forecasting specification (GB/T222482-2008). 本发明公开了一种基于栅格单元的机器学习模型的智能长期径流预报方法,本发明以机器学习的理论和方法作为建模的基础。包括栅格数据处理、因子滞后性分析、机器学习模型建模、参数优化、模型验证。相应的方法包括栅格转化、利用时间滞后互相关法</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEKwkAQRuE0FqLeYTxAiqBRUkpQtLGylbAm_24WdmfC7uT-ingAq1d8b1k8b6wIwTuwUhB2pSJFSjOLtWQloTdZPTuK0FEGEkvR9KNnUIBJ_CUZEOhlMj7O5JIfaGaveV0srAkZm19XxfZyfrTXEpN0yJPpwdCuvVdVfaibY7M_7f553hNgPFw</recordid><startdate>20230131</startdate><enddate>20230131</enddate><creator>CHU HAIBO</creator><creator>WANG ZHUOQI</creator><creator>WANG ZONGHAN</creator><scope>EVB</scope></search><sort><creationdate>20230131</creationdate><title>Intelligent long-term runoff forecasting method of machine learning model based on grid units</title><author>CHU HAIBO ; WANG ZHUOQI ; WANG ZONGHAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115659794A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHU HAIBO</creatorcontrib><creatorcontrib>WANG ZHUOQI</creatorcontrib><creatorcontrib>WANG ZONGHAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHU HAIBO</au><au>WANG ZHUOQI</au><au>WANG ZONGHAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Intelligent long-term runoff forecasting method of machine learning model based on grid units</title><date>2023-01-31</date><risdate>2023</risdate><abstract>The invention discloses an intelligent long-term runoff forecasting method of a machine learning model based on grid units. The intelligent long-term runoff forecasting method takes the theory and method of machine learning as the basis of modeling. Comprising the steps of raster data processing, factor hysteresis analysis, machine learning model modeling, parameter optimization and model verification. The corresponding method comprises the steps of grid conversion, utilization of a time delay cross-correlation method, a machine learning model and a verification method. According to the medium-and-long-term runoff forecasting method provided by the invention, the determination coefficients are used for evaluation, and the determination coefficient values can reach 0.8 or above and reach the second-class precision or above of the hydrological information forecasting specification (GB/T222482-2008). 本发明公开了一种基于栅格单元的机器学习模型的智能长期径流预报方法,本发明以机器学习的理论和方法作为建模的基础。包括栅格数据处理、因子滞后性分析、机器学习模型建模、参数优化、模型验证。相应的方法包括栅格转化、利用时间滞后互相关法</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115659794A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Intelligent long-term runoff forecasting method of machine learning model based on grid units
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A28%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHU%20HAIBO&rft.date=2023-01-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115659794A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true