Target detection method and system for automobile aided driving
The invention discloses a target detection method and system for automobile aided driving, and relates to the field of automobile aided driving, a target detection model is obtained through a yolov5 model, a target object on a traffic road image captured in the automobile driving process is detected...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | CHEN MIAO LI KAIPENG LYU LONGJIN YANG YUEPING FAN LIANGZHONG LUO LIHUA LIN WENYU WU HAO |
description | The invention discloses a target detection method and system for automobile aided driving, and relates to the field of automobile aided driving, a target detection model is obtained through a yolov5 model, a target object on a traffic road image captured in the automobile driving process is detected through the target detection model, and due to the fact that the yolov5 model belongs to a one-stage algorithm, the target object can be detected through the yolov5 model. Compared with R-CNN and Fast-RCNN, the method has the advantages that a candidate frame screening process is omitted, the position coordinates of the target frame and the classification probability of the target are directly regressed, and compared with R-CNN and Fast-RCNN, a two-stage algorithm of firstly screening the candidate frame, then judging whether the to-be-detected target is in the candidate frame and correcting the position of the target is needed, so that higher recognition efficiency is achieved; the method is suitable for the driv |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115641558A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115641558A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115641558A3</originalsourceid><addsrcrecordid>eNrjZLAPSSxKTy1RSEktSU0uyczPU8hNLcnIT1FIzEtRKK4sLknNVUjLL1JILC3Jz81PysxJVUjMTElNUUgpyizLzEvnYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxzn6GhqZmJoamphaOxsSoAQCfJjEP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Target detection method and system for automobile aided driving</title><source>esp@cenet</source><creator>CHEN MIAO ; LI KAIPENG ; LYU LONGJIN ; YANG YUEPING ; FAN LIANGZHONG ; LUO LIHUA ; LIN WENYU ; WU HAO</creator><creatorcontrib>CHEN MIAO ; LI KAIPENG ; LYU LONGJIN ; YANG YUEPING ; FAN LIANGZHONG ; LUO LIHUA ; LIN WENYU ; WU HAO</creatorcontrib><description>The invention discloses a target detection method and system for automobile aided driving, and relates to the field of automobile aided driving, a target detection model is obtained through a yolov5 model, a target object on a traffic road image captured in the automobile driving process is detected through the target detection model, and due to the fact that the yolov5 model belongs to a one-stage algorithm, the target object can be detected through the yolov5 model. Compared with R-CNN and Fast-RCNN, the method has the advantages that a candidate frame screening process is omitted, the position coordinates of the target frame and the classification probability of the target are directly regressed, and compared with R-CNN and Fast-RCNN, a two-stage algorithm of firstly screening the candidate frame, then judging whether the to-be-detected target is in the candidate frame and correcting the position of the target is needed, so that higher recognition efficiency is achieved; the method is suitable for the driv</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230124&DB=EPODOC&CC=CN&NR=115641558A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230124&DB=EPODOC&CC=CN&NR=115641558A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN MIAO</creatorcontrib><creatorcontrib>LI KAIPENG</creatorcontrib><creatorcontrib>LYU LONGJIN</creatorcontrib><creatorcontrib>YANG YUEPING</creatorcontrib><creatorcontrib>FAN LIANGZHONG</creatorcontrib><creatorcontrib>LUO LIHUA</creatorcontrib><creatorcontrib>LIN WENYU</creatorcontrib><creatorcontrib>WU HAO</creatorcontrib><title>Target detection method and system for automobile aided driving</title><description>The invention discloses a target detection method and system for automobile aided driving, and relates to the field of automobile aided driving, a target detection model is obtained through a yolov5 model, a target object on a traffic road image captured in the automobile driving process is detected through the target detection model, and due to the fact that the yolov5 model belongs to a one-stage algorithm, the target object can be detected through the yolov5 model. Compared with R-CNN and Fast-RCNN, the method has the advantages that a candidate frame screening process is omitted, the position coordinates of the target frame and the classification probability of the target are directly regressed, and compared with R-CNN and Fast-RCNN, a two-stage algorithm of firstly screening the candidate frame, then judging whether the to-be-detected target is in the candidate frame and correcting the position of the target is needed, so that higher recognition efficiency is achieved; the method is suitable for the driv</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAPSSxKTy1RSEktSU0uyczPU8hNLcnIT1FIzEtRKK4sLknNVUjLL1JILC3Jz81PysxJVUjMTElNUUgpyizLzEvnYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxzn6GhqZmJoamphaOxsSoAQCfJjEP</recordid><startdate>20230124</startdate><enddate>20230124</enddate><creator>CHEN MIAO</creator><creator>LI KAIPENG</creator><creator>LYU LONGJIN</creator><creator>YANG YUEPING</creator><creator>FAN LIANGZHONG</creator><creator>LUO LIHUA</creator><creator>LIN WENYU</creator><creator>WU HAO</creator><scope>EVB</scope></search><sort><creationdate>20230124</creationdate><title>Target detection method and system for automobile aided driving</title><author>CHEN MIAO ; LI KAIPENG ; LYU LONGJIN ; YANG YUEPING ; FAN LIANGZHONG ; LUO LIHUA ; LIN WENYU ; WU HAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115641558A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN MIAO</creatorcontrib><creatorcontrib>LI KAIPENG</creatorcontrib><creatorcontrib>LYU LONGJIN</creatorcontrib><creatorcontrib>YANG YUEPING</creatorcontrib><creatorcontrib>FAN LIANGZHONG</creatorcontrib><creatorcontrib>LUO LIHUA</creatorcontrib><creatorcontrib>LIN WENYU</creatorcontrib><creatorcontrib>WU HAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN MIAO</au><au>LI KAIPENG</au><au>LYU LONGJIN</au><au>YANG YUEPING</au><au>FAN LIANGZHONG</au><au>LUO LIHUA</au><au>LIN WENYU</au><au>WU HAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Target detection method and system for automobile aided driving</title><date>2023-01-24</date><risdate>2023</risdate><abstract>The invention discloses a target detection method and system for automobile aided driving, and relates to the field of automobile aided driving, a target detection model is obtained through a yolov5 model, a target object on a traffic road image captured in the automobile driving process is detected through the target detection model, and due to the fact that the yolov5 model belongs to a one-stage algorithm, the target object can be detected through the yolov5 model. Compared with R-CNN and Fast-RCNN, the method has the advantages that a candidate frame screening process is omitted, the position coordinates of the target frame and the classification probability of the target are directly regressed, and compared with R-CNN and Fast-RCNN, a two-stage algorithm of firstly screening the candidate frame, then judging whether the to-be-detected target is in the candidate frame and correcting the position of the target is needed, so that higher recognition efficiency is achieved; the method is suitable for the driv</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115641558A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING PHYSICS |
title | Target detection method and system for automobile aided driving |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T02%3A49%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20MIAO&rft.date=2023-01-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115641558A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |