Electric vehicle multi-objective optimization charging scheduling method under hybrid demand response

An electric vehicle multi-objective optimization charging scheduling method under mixed demand response comprises the following steps: constructing a price type demand response strategy, and dividing a guiding process of an electric vehicle aggregator to an electric vehicle user charging behavior fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YAN YULIN, TANG JINRUI, HE LANFEI, HE ZIYIN, FANG CUN, HOU TINGTING, HOU HUI, WANG ZHIXUN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YAN YULIN
TANG JINRUI
HE LANFEI
HE ZIYIN
FANG CUN
HOU TINGTING
HOU HUI
WANG ZHIXUN
description An electric vehicle multi-objective optimization charging scheduling method under mixed demand response comprises the following steps: constructing a price type demand response strategy, and dividing a guiding process of an electric vehicle aggregator to an electric vehicle user charging behavior from three stages of day ahead, day and end of day; on the basis of the charging subsidy, users are motivated by formulating a user level classification mechanism and an integral reward mechanism, the users are classified in the process, and different integral schemes are set according to categories; on the basis of the excitation type demand response strategy, the time-of-use electricity price is converted into an integral, and the integral value in the peak-valley period is limited to obtain a mixed demand response strategy; the user adhesion degree is analyzed and quantified and introduced into the analysis process, the influences of the three types of demand response strategies on the power grid and the user side
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115630796A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115630796A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115630796A3</originalsourceid><addsrcrecordid>eNqNik0KwjAUBrtxIeodngcoWIqVLqVUXLlyX9Lks3mSn5KkBT29FTyAqxmGWWdoDWQKLGmGZmlAdjKJc98_l84zyI-JLb9FYu9IahEGdgNFqaEm81WLpL2iySkE0q8-sCIFK5yigDh6F7HNVg9hInY_brL9pb031xyj75ZHSDikrrkVxbEqD6e6Opf_PB-2VkA_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Electric vehicle multi-objective optimization charging scheduling method under hybrid demand response</title><source>esp@cenet</source><creator>YAN YULIN ; TANG JINRUI ; HE LANFEI ; HE ZIYIN ; FANG CUN ; HOU TINGTING ; HOU HUI ; WANG ZHIXUN</creator><creatorcontrib>YAN YULIN ; TANG JINRUI ; HE LANFEI ; HE ZIYIN ; FANG CUN ; HOU TINGTING ; HOU HUI ; WANG ZHIXUN</creatorcontrib><description>An electric vehicle multi-objective optimization charging scheduling method under mixed demand response comprises the following steps: constructing a price type demand response strategy, and dividing a guiding process of an electric vehicle aggregator to an electric vehicle user charging behavior from three stages of day ahead, day and end of day; on the basis of the charging subsidy, users are motivated by formulating a user level classification mechanism and an integral reward mechanism, the users are classified in the process, and different integral schemes are set according to categories; on the basis of the excitation type demand response strategy, the time-of-use electricity price is converted into an integral, and the integral value in the peak-valley period is limited to obtain a mixed demand response strategy; the user adhesion degree is analyzed and quantified and introduced into the analysis process, the influences of the three types of demand response strategies on the power grid and the user side</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230120&amp;DB=EPODOC&amp;CC=CN&amp;NR=115630796A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230120&amp;DB=EPODOC&amp;CC=CN&amp;NR=115630796A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YAN YULIN</creatorcontrib><creatorcontrib>TANG JINRUI</creatorcontrib><creatorcontrib>HE LANFEI</creatorcontrib><creatorcontrib>HE ZIYIN</creatorcontrib><creatorcontrib>FANG CUN</creatorcontrib><creatorcontrib>HOU TINGTING</creatorcontrib><creatorcontrib>HOU HUI</creatorcontrib><creatorcontrib>WANG ZHIXUN</creatorcontrib><title>Electric vehicle multi-objective optimization charging scheduling method under hybrid demand response</title><description>An electric vehicle multi-objective optimization charging scheduling method under mixed demand response comprises the following steps: constructing a price type demand response strategy, and dividing a guiding process of an electric vehicle aggregator to an electric vehicle user charging behavior from three stages of day ahead, day and end of day; on the basis of the charging subsidy, users are motivated by formulating a user level classification mechanism and an integral reward mechanism, the users are classified in the process, and different integral schemes are set according to categories; on the basis of the excitation type demand response strategy, the time-of-use electricity price is converted into an integral, and the integral value in the peak-valley period is limited to obtain a mixed demand response strategy; the user adhesion degree is analyzed and quantified and introduced into the analysis process, the influences of the three types of demand response strategies on the power grid and the user side</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNik0KwjAUBrtxIeodngcoWIqVLqVUXLlyX9Lks3mSn5KkBT29FTyAqxmGWWdoDWQKLGmGZmlAdjKJc98_l84zyI-JLb9FYu9IahEGdgNFqaEm81WLpL2iySkE0q8-sCIFK5yigDh6F7HNVg9hInY_brL9pb031xyj75ZHSDikrrkVxbEqD6e6Opf_PB-2VkA_</recordid><startdate>20230120</startdate><enddate>20230120</enddate><creator>YAN YULIN</creator><creator>TANG JINRUI</creator><creator>HE LANFEI</creator><creator>HE ZIYIN</creator><creator>FANG CUN</creator><creator>HOU TINGTING</creator><creator>HOU HUI</creator><creator>WANG ZHIXUN</creator><scope>EVB</scope></search><sort><creationdate>20230120</creationdate><title>Electric vehicle multi-objective optimization charging scheduling method under hybrid demand response</title><author>YAN YULIN ; TANG JINRUI ; HE LANFEI ; HE ZIYIN ; FANG CUN ; HOU TINGTING ; HOU HUI ; WANG ZHIXUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115630796A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>YAN YULIN</creatorcontrib><creatorcontrib>TANG JINRUI</creatorcontrib><creatorcontrib>HE LANFEI</creatorcontrib><creatorcontrib>HE ZIYIN</creatorcontrib><creatorcontrib>FANG CUN</creatorcontrib><creatorcontrib>HOU TINGTING</creatorcontrib><creatorcontrib>HOU HUI</creatorcontrib><creatorcontrib>WANG ZHIXUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YAN YULIN</au><au>TANG JINRUI</au><au>HE LANFEI</au><au>HE ZIYIN</au><au>FANG CUN</au><au>HOU TINGTING</au><au>HOU HUI</au><au>WANG ZHIXUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Electric vehicle multi-objective optimization charging scheduling method under hybrid demand response</title><date>2023-01-20</date><risdate>2023</risdate><abstract>An electric vehicle multi-objective optimization charging scheduling method under mixed demand response comprises the following steps: constructing a price type demand response strategy, and dividing a guiding process of an electric vehicle aggregator to an electric vehicle user charging behavior from three stages of day ahead, day and end of day; on the basis of the charging subsidy, users are motivated by formulating a user level classification mechanism and an integral reward mechanism, the users are classified in the process, and different integral schemes are set according to categories; on the basis of the excitation type demand response strategy, the time-of-use electricity price is converted into an integral, and the integral value in the peak-valley period is limited to obtain a mixed demand response strategy; the user adhesion degree is analyzed and quantified and introduced into the analysis process, the influences of the three types of demand response strategies on the power grid and the user side</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN115630796A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Electric vehicle multi-objective optimization charging scheduling method under hybrid demand response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T14%3A33%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YAN%20YULIN&rft.date=2023-01-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115630796A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true