Sensor network analysis system based on TTDPN model and vector machine regression prediction
The invention discloses a sensor network analysis system based on a TTDPN model and vector machine regression prediction, and the system comprises a node fault information collection module which is used for collecting node fault information; the fault information preprocessing module is used for pr...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | BI XUNYIN GONG CHENGLONG SONG YONGXIAN CAO SHUANGGUI FAN JISHAN WANG JINGZHUO |
description | The invention discloses a sensor network analysis system based on a TTDPN model and vector machine regression prediction, and the system comprises a node fault information collection module which is used for collecting node fault information; the fault information preprocessing module is used for preprocessing the node fault information by adopting a Hadoop-based rough set rapid attribute reduction algorithm; the fault identification and evaluation module is used for realizing identification of fault types based on an RBF neural network model; and the fault decision module is used for outputting a current fault recovery decision based on the fault type and the TTDPN model of the sensor network. According to the method, a fault self-detection strategy for the sensor nodes and the whole network can be formed, and the data credibility and robustness are improved; fault detection can be carried out on line in real time according to data of each node of a sensor, and closed-loop control over the health state of th |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115623517A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115623517A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115623517A3</originalsourceid><addsrcrecordid>eNqNzT0KAjEUBOBtLES9w_MAFnFZrWVVrBbBlMISk1GD-VnygrK3N4UHsJopvmGm1fWCwDFRQP7E9CIVlBvZMvHIGZ5uimEoBpJyf-7IRwNXkKE3dC47r_TTBlDCI4HZFjkkGKtzqfNqcleOsfjlrFoeD7I9rTDEHjwojfLbt50QzWZdN2K7q_8xX60JO9I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Sensor network analysis system based on TTDPN model and vector machine regression prediction</title><source>esp@cenet</source><creator>BI XUNYIN ; GONG CHENGLONG ; SONG YONGXIAN ; CAO SHUANGGUI ; FAN JISHAN ; WANG JINGZHUO</creator><creatorcontrib>BI XUNYIN ; GONG CHENGLONG ; SONG YONGXIAN ; CAO SHUANGGUI ; FAN JISHAN ; WANG JINGZHUO</creatorcontrib><description>The invention discloses a sensor network analysis system based on a TTDPN model and vector machine regression prediction, and the system comprises a node fault information collection module which is used for collecting node fault information; the fault information preprocessing module is used for preprocessing the node fault information by adopting a Hadoop-based rough set rapid attribute reduction algorithm; the fault identification and evaluation module is used for realizing identification of fault types based on an RBF neural network model; and the fault decision module is used for outputting a current fault recovery decision based on the fault type and the TTDPN model of the sensor network. According to the method, a fault self-detection strategy for the sensor nodes and the whole network can be formed, and the data credibility and robustness are improved; fault detection can be carried out on line in real time according to data of each node of a sensor, and closed-loop control over the health state of th</description><language>chi ; eng</language><subject>ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; WIRELESS COMMUNICATIONS NETWORKS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230117&DB=EPODOC&CC=CN&NR=115623517A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230117&DB=EPODOC&CC=CN&NR=115623517A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>BI XUNYIN</creatorcontrib><creatorcontrib>GONG CHENGLONG</creatorcontrib><creatorcontrib>SONG YONGXIAN</creatorcontrib><creatorcontrib>CAO SHUANGGUI</creatorcontrib><creatorcontrib>FAN JISHAN</creatorcontrib><creatorcontrib>WANG JINGZHUO</creatorcontrib><title>Sensor network analysis system based on TTDPN model and vector machine regression prediction</title><description>The invention discloses a sensor network analysis system based on a TTDPN model and vector machine regression prediction, and the system comprises a node fault information collection module which is used for collecting node fault information; the fault information preprocessing module is used for preprocessing the node fault information by adopting a Hadoop-based rough set rapid attribute reduction algorithm; the fault identification and evaluation module is used for realizing identification of fault types based on an RBF neural network model; and the fault decision module is used for outputting a current fault recovery decision based on the fault type and the TTDPN model of the sensor network. According to the method, a fault self-detection strategy for the sensor nodes and the whole network can be formed, and the data credibility and robustness are improved; fault detection can be carried out on line in real time according to data of each node of a sensor, and closed-loop control over the health state of th</description><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>WIRELESS COMMUNICATIONS NETWORKS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzT0KAjEUBOBtLES9w_MAFnFZrWVVrBbBlMISk1GD-VnygrK3N4UHsJopvmGm1fWCwDFRQP7E9CIVlBvZMvHIGZ5uimEoBpJyf-7IRwNXkKE3dC47r_TTBlDCI4HZFjkkGKtzqfNqcleOsfjlrFoeD7I9rTDEHjwojfLbt50QzWZdN2K7q_8xX60JO9I</recordid><startdate>20230117</startdate><enddate>20230117</enddate><creator>BI XUNYIN</creator><creator>GONG CHENGLONG</creator><creator>SONG YONGXIAN</creator><creator>CAO SHUANGGUI</creator><creator>FAN JISHAN</creator><creator>WANG JINGZHUO</creator><scope>EVB</scope></search><sort><creationdate>20230117</creationdate><title>Sensor network analysis system based on TTDPN model and vector machine regression prediction</title><author>BI XUNYIN ; GONG CHENGLONG ; SONG YONGXIAN ; CAO SHUANGGUI ; FAN JISHAN ; WANG JINGZHUO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115623517A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>WIRELESS COMMUNICATIONS NETWORKS</topic><toplevel>online_resources</toplevel><creatorcontrib>BI XUNYIN</creatorcontrib><creatorcontrib>GONG CHENGLONG</creatorcontrib><creatorcontrib>SONG YONGXIAN</creatorcontrib><creatorcontrib>CAO SHUANGGUI</creatorcontrib><creatorcontrib>FAN JISHAN</creatorcontrib><creatorcontrib>WANG JINGZHUO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BI XUNYIN</au><au>GONG CHENGLONG</au><au>SONG YONGXIAN</au><au>CAO SHUANGGUI</au><au>FAN JISHAN</au><au>WANG JINGZHUO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Sensor network analysis system based on TTDPN model and vector machine regression prediction</title><date>2023-01-17</date><risdate>2023</risdate><abstract>The invention discloses a sensor network analysis system based on a TTDPN model and vector machine regression prediction, and the system comprises a node fault information collection module which is used for collecting node fault information; the fault information preprocessing module is used for preprocessing the node fault information by adopting a Hadoop-based rough set rapid attribute reduction algorithm; the fault identification and evaluation module is used for realizing identification of fault types based on an RBF neural network model; and the fault decision module is used for outputting a current fault recovery decision based on the fault type and the TTDPN model of the sensor network. According to the method, a fault self-detection strategy for the sensor nodes and the whole network can be formed, and the data credibility and robustness are improved; fault detection can be carried out on line in real time according to data of each node of a sensor, and closed-loop control over the health state of th</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115623517A |
source | esp@cenet |
subjects | ELECTRIC COMMUNICATION TECHNIQUE ELECTRICITY WIRELESS COMMUNICATIONS NETWORKS |
title | Sensor network analysis system based on TTDPN model and vector machine regression prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A22%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=BI%20XUNYIN&rft.date=2023-01-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115623517A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |