Semi-supervised learning deep valley intelligent identification method based on remote sensing image
The invention discloses a semi-supervised learning deep valley intelligent identification method based on a remote sensing image, and belongs to the technical field of image processing, and the method comprises the steps: S1, selecting a satellite remote sensing image covering a deep valley landform...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZHANG RUI YU LAIBO WANG LIJUN JING CHUANGLI ZUO MINGYONG LIU GUOXIANG LYU JICHAO WU RENZHE ZHANG YINGXU SEO JEONG-SEON |
description | The invention discloses a semi-supervised learning deep valley intelligent identification method based on a remote sensing image, and belongs to the technical field of image processing, and the method comprises the steps: S1, selecting a satellite remote sensing image covering a deep valley landform in a multi-scene manner and digital elevation model (DEM) data, and building a deep valley landform intelligent identification data set; s2, constructing a deep convolutional neural network coding model by using a ResNet50 algorithm structure, a channel and a space attention mechanism based on a deep learning coding principle; s3, constructing a deep river valley intelligent identification main decoder and an auxiliary decoder model under a characteristic disturbance function based on a semi-supervised learning and decoding theory; and S4, constructing and training a deep river valley intelligent identification model, and carrying out intelligent identification on the deep river valley by utilizing the deep river |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN115620163A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN115620163A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN115620163A3</originalsourceid><addsrcrecordid>eNqNjDEKwkAURNNYiHqH7wECxmB6CYqVjfbhm50kH3b_Ltk14O1NwAPYzPBg3qwz84CTPL4DxkkiDFnwqKI9GSDQxNbiQ6IJ1koPTSRmTumk5SReySEN3tCLF3nmEc4nUITG5UUc99hmq45txO7Xm2x_vTzrW47gG8TALRSpqe9FcaqOh6Iqz-U_my9GUT9p</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Semi-supervised learning deep valley intelligent identification method based on remote sensing image</title><source>esp@cenet</source><creator>ZHANG RUI ; YU LAIBO ; WANG LIJUN ; JING CHUANGLI ; ZUO MINGYONG ; LIU GUOXIANG ; LYU JICHAO ; WU RENZHE ; ZHANG YINGXU ; SEO JEONG-SEON</creator><creatorcontrib>ZHANG RUI ; YU LAIBO ; WANG LIJUN ; JING CHUANGLI ; ZUO MINGYONG ; LIU GUOXIANG ; LYU JICHAO ; WU RENZHE ; ZHANG YINGXU ; SEO JEONG-SEON</creatorcontrib><description>The invention discloses a semi-supervised learning deep valley intelligent identification method based on a remote sensing image, and belongs to the technical field of image processing, and the method comprises the steps: S1, selecting a satellite remote sensing image covering a deep valley landform in a multi-scene manner and digital elevation model (DEM) data, and building a deep valley landform intelligent identification data set; s2, constructing a deep convolutional neural network coding model by using a ResNet50 algorithm structure, a channel and a space attention mechanism based on a deep learning coding principle; s3, constructing a deep river valley intelligent identification main decoder and an auxiliary decoder model under a characteristic disturbance function based on a semi-supervised learning and decoding theory; and S4, constructing and training a deep river valley intelligent identification model, and carrying out intelligent identification on the deep river valley by utilizing the deep river</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230117&DB=EPODOC&CC=CN&NR=115620163A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230117&DB=EPODOC&CC=CN&NR=115620163A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG RUI</creatorcontrib><creatorcontrib>YU LAIBO</creatorcontrib><creatorcontrib>WANG LIJUN</creatorcontrib><creatorcontrib>JING CHUANGLI</creatorcontrib><creatorcontrib>ZUO MINGYONG</creatorcontrib><creatorcontrib>LIU GUOXIANG</creatorcontrib><creatorcontrib>LYU JICHAO</creatorcontrib><creatorcontrib>WU RENZHE</creatorcontrib><creatorcontrib>ZHANG YINGXU</creatorcontrib><creatorcontrib>SEO JEONG-SEON</creatorcontrib><title>Semi-supervised learning deep valley intelligent identification method based on remote sensing image</title><description>The invention discloses a semi-supervised learning deep valley intelligent identification method based on a remote sensing image, and belongs to the technical field of image processing, and the method comprises the steps: S1, selecting a satellite remote sensing image covering a deep valley landform in a multi-scene manner and digital elevation model (DEM) data, and building a deep valley landform intelligent identification data set; s2, constructing a deep convolutional neural network coding model by using a ResNet50 algorithm structure, a channel and a space attention mechanism based on a deep learning coding principle; s3, constructing a deep river valley intelligent identification main decoder and an auxiliary decoder model under a characteristic disturbance function based on a semi-supervised learning and decoding theory; and S4, constructing and training a deep river valley intelligent identification model, and carrying out intelligent identification on the deep river valley by utilizing the deep river</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEKwkAURNNYiHqH7wECxmB6CYqVjfbhm50kH3b_Ltk14O1NwAPYzPBg3qwz84CTPL4DxkkiDFnwqKI9GSDQxNbiQ6IJ1koPTSRmTumk5SReySEN3tCLF3nmEc4nUITG5UUc99hmq45txO7Xm2x_vTzrW47gG8TALRSpqe9FcaqOh6Iqz-U_my9GUT9p</recordid><startdate>20230117</startdate><enddate>20230117</enddate><creator>ZHANG RUI</creator><creator>YU LAIBO</creator><creator>WANG LIJUN</creator><creator>JING CHUANGLI</creator><creator>ZUO MINGYONG</creator><creator>LIU GUOXIANG</creator><creator>LYU JICHAO</creator><creator>WU RENZHE</creator><creator>ZHANG YINGXU</creator><creator>SEO JEONG-SEON</creator><scope>EVB</scope></search><sort><creationdate>20230117</creationdate><title>Semi-supervised learning deep valley intelligent identification method based on remote sensing image</title><author>ZHANG RUI ; YU LAIBO ; WANG LIJUN ; JING CHUANGLI ; ZUO MINGYONG ; LIU GUOXIANG ; LYU JICHAO ; WU RENZHE ; ZHANG YINGXU ; SEO JEONG-SEON</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN115620163A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG RUI</creatorcontrib><creatorcontrib>YU LAIBO</creatorcontrib><creatorcontrib>WANG LIJUN</creatorcontrib><creatorcontrib>JING CHUANGLI</creatorcontrib><creatorcontrib>ZUO MINGYONG</creatorcontrib><creatorcontrib>LIU GUOXIANG</creatorcontrib><creatorcontrib>LYU JICHAO</creatorcontrib><creatorcontrib>WU RENZHE</creatorcontrib><creatorcontrib>ZHANG YINGXU</creatorcontrib><creatorcontrib>SEO JEONG-SEON</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG RUI</au><au>YU LAIBO</au><au>WANG LIJUN</au><au>JING CHUANGLI</au><au>ZUO MINGYONG</au><au>LIU GUOXIANG</au><au>LYU JICHAO</au><au>WU RENZHE</au><au>ZHANG YINGXU</au><au>SEO JEONG-SEON</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Semi-supervised learning deep valley intelligent identification method based on remote sensing image</title><date>2023-01-17</date><risdate>2023</risdate><abstract>The invention discloses a semi-supervised learning deep valley intelligent identification method based on a remote sensing image, and belongs to the technical field of image processing, and the method comprises the steps: S1, selecting a satellite remote sensing image covering a deep valley landform in a multi-scene manner and digital elevation model (DEM) data, and building a deep valley landform intelligent identification data set; s2, constructing a deep convolutional neural network coding model by using a ResNet50 algorithm structure, a channel and a space attention mechanism based on a deep learning coding principle; s3, constructing a deep river valley intelligent identification main decoder and an auxiliary decoder model under a characteristic disturbance function based on a semi-supervised learning and decoding theory; and S4, constructing and training a deep river valley intelligent identification model, and carrying out intelligent identification on the deep river valley by utilizing the deep river</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN115620163A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | Semi-supervised learning deep valley intelligent identification method based on remote sensing image |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A43%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20RUI&rft.date=2023-01-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN115620163A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |